Cargando…

Chemical bonding in americium oxides probed by X-ray spectroscopy

The electronic structure and the chemical state in Am binary oxides and Am-doped UO[Formula: see text] were studied by means of X-ray absorption spectroscopy at shallow Am core (4d and 5d) edges. In particular, the Am 5f states were probed and the nature of their bonding to the oxygen states was ana...

Descripción completa

Detalles Bibliográficos
Autores principales: Butorin, Sergei M., Shuh, David K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10354041/
https://www.ncbi.nlm.nih.gov/pubmed/37463970
http://dx.doi.org/10.1038/s41598-023-38505-y
Descripción
Sumario:The electronic structure and the chemical state in Am binary oxides and Am-doped UO[Formula: see text] were studied by means of X-ray absorption spectroscopy at shallow Am core (4d and 5d) edges. In particular, the Am 5f states were probed and the nature of their bonding to the oxygen states was analyzed. The interpretation of the experimental data was supported by the Anderson impurity model (AIM) calculations which took into account the full multiplet structure due to the interaction between 5f electrons as well as the interaction with the core hole. The sensitivity of the branching ratio of the Am [Formula: see text] and [Formula: see text] X-ray absorption lines to the chemical state of Am was shown using Am binary oxides as reference systems. The observed ratio for Am-doped UO[Formula: see text] suggests that at least at low Am concentrations, americium is in the Am(III) state in the UO[Formula: see text] lattice. To confirm the validity of the applied AIM approach, the analysis of the Am 4f X-ray photoelectron spectra of AmO[Formula: see text] and Am[Formula: see text] O[Formula: see text] was also performed which revealed a good agreement between experiment and calculations. As a whole, AmO[Formula: see text] can be classified as the charge-transfer compound with the 5f occupancy ([Formula: see text] ) equal to 5.73 electrons, while Am[Formula: see text] O[Formula: see text] is rather a Mott–Hubbard system with [Formula: see text] = 6.05.