Cargando…
Non-volatile reconfigurable spin logic functions in a two-channel Hall bar by spin–orbit torque-based magnetic domains and directional read current
A long-standing goal of CMOS-based logic devices is to meet the needs of key markets, including ultralow-power operation and high operation speed, along with the continuing miniaturization of the architecture. However, despite significant progress in their development, conventional CMOS-based device...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10354089/ https://www.ncbi.nlm.nih.gov/pubmed/37463993 http://dx.doi.org/10.1038/s41598-023-38580-1 |
Sumario: | A long-standing goal of CMOS-based logic devices is to meet the needs of key markets, including ultralow-power operation and high operation speed, along with the continuing miniaturization of the architecture. However, despite significant progress in their development, conventional CMOS-based devices still suffer from drawbacks such as introducing large unintended leakage currents and volatile behavior. Thus, reconfigurable logic gates based on magnetic domain (MD) have emerged as a highly promising option because they offer fast operation speeds, nonvolatility, and diverse logic functions in a single-device configuration. Here, we address multiple reconfigurable MD logic gates in a single two-channel Hall bar device by varying the voltage-driven read-current directions and selecting a non-inverting or inverting comparator in W/CoFeB/MgO/Ta stacks. The non-volatile MD switching behavior induced by spin–orbit torque significantly affects our logic gate functions, which are not necessarily synchronized to a single clock. By adapting MD switching by spin-orbit torque and anomalous Hall effect voltage outputs, we identified eight reconfigurable logic gates, including AND, NAND, NOR, OR, INH, Converse INH, Converse IMP, and IMP, in a single device. These experimental findings represent a significant step forward in a wide range of MD-based logic applications in the near future. |
---|