Cargando…
Machine learning and the quest for objectivity in climate model parameterization
Parameterization and parameter tuning are central aspects of climate modeling, and there is widespread consensus that these procedures involve certain subjective elements. Even if the use of these subjective elements is not necessarily epistemically problematic, there is an intuitive appeal for repl...
Autores principales: | Jebeile, Julie, Lam, Vincent, Majszak, Mason, Räz, Tim |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10354127/ https://www.ncbi.nlm.nih.gov/pubmed/37476487 http://dx.doi.org/10.1007/s10584-023-03532-1 |
Ejemplares similares
-
Stable machine-learning parameterization of subgrid processes for climate modeling at a range of resolutions
por: Yuval, Janni, et al.
Publicado: (2020) -
Hierarchical Task-Parameterized Learning from Demonstration for Collaborative Object Movement
por: Hu, Siyao, et al.
Publicado: (2019) -
Physics-informed deep-learning parameterization of ocean vertical mixing improves climate simulations
por: Zhu, Yuchao, et al.
Publicado: (2022) -
Multi-Objective Evolutionary Architecture Search for Parameterized Quantum Circuits
por: Ding, Li, et al.
Publicado: (2023) -
The quest for the reliability of machine learning models in binary classification on tabular data
por: Araujo Santos, Vitor Cirilo, et al.
Publicado: (2023)