Cargando…
Machine learning to predict poor school performance in paediatric survivors of intensive care: a population-based cohort study
PURPOSE: Whilst survival in paediatric critical care has improved, clinicians lack tools capable of predicting long-term outcomes. We developed a machine learning model to predict poor school outcomes in children surviving intensive care unit (ICU). METHODS: Population-based study of children < 1...
Autores principales: | Gilholm, Patricia, Gibbons, Kristen, Brüningk, Sarah, Klatt, Juliane, Vaithianathan, Rhema, Long, Debbie, Millar, Johnny, Tomaszewski, Wojtek, Schlapbach, Luregn J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10354166/ https://www.ncbi.nlm.nih.gov/pubmed/37354231 http://dx.doi.org/10.1007/s00134-023-07137-1 |
Ejemplares similares
-
Educational Outcomes of Childhood Survivors of Critical Illness—A Population-Based Linkage Study*
por: Tomaszewski, Wojtek, et al.
Publicado: (2022) -
Validation of a paediatric sepsis screening tool to identify children with sepsis in the emergency department: a statewide prospective cohort study in Queensland, Australia
por: Gilholm, Patricia, et al.
Publicado: (2023) -
Knowledge translation following the implementation of a state-wide Paediatric Sepsis Pathway in the emergency department- a multi-centre survey study
por: Harley, Amanda, et al.
Publicado: (2021) -
Priorities for paediatric critical care research: a modified Delphi study by the Australian and New Zealand Intensive Care Society Paediatric Study Group
por: Raman, Sainath, et al.
Publicado: (2023) -
Impact of parental and healthcare professional concern on the diagnosis of pediatric sepsis: a diagnostic accuracy study
por: Sever, Zoe, et al.
Publicado: (2023)