Cargando…
CNN stability training improves robustness to scanner and IHC-based image variability for epithelium segmentation in cervical histology
BACKGROUND: In digital pathology, image properties such as color, brightness, contrast and blurriness may vary based on the scanner and sample preparation. Convolutional Neural Networks (CNNs) are sensitive to these variations and may underperform on images from a different domain than the one used...
Autores principales: | Miranda Ruiz, Felipe, Lahrmann, Bernd, Bartels, Liam, Krauthoff, Alexandra, Keil, Andreas, Härtel, Steffen, Tao, Amy S., Ströbel, Philipp, Clarke, Megan A., Wentzensen, Nicolas, Grabe, Niels |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10354251/ https://www.ncbi.nlm.nih.gov/pubmed/37476610 http://dx.doi.org/10.3389/fmed.2023.1173616 |
Ejemplares similares
-
Accuracy and Efficiency of Deep-Learning–Based Automation of Dual Stain Cytology in Cervical Cancer Screening
por: Wentzensen, Nicolas, et al.
Publicado: (2020) -
Semantic Focusing Allows Fully Automated Single-Layer Slide Scanning of Cervical Cytology Slides
por: Lahrmann, Bernd, et al.
Publicado: (2013) -
A Virtual Microscopy System to Scan, Evaluate and Archive Biomarker Enhanced Cervical Cytology Slides
por: Grabe, Niels, et al.
Publicado: (2010) -
Sequence mutations of the substrate binding pocket of stem cell factor and multidrug resistance protein ABCG2 in renal cell cancer: A possible link to treatment resistance
por: ZOERNIG, INKA, et al.
Publicado: (2013) -
Automatic Tumor-Stroma Separation in Fluorescence TMAs Enables the Quantitative High-Throughput Analysis of Multiple Cancer Biomarkers
por: Lahrmann, Bernd, et al.
Publicado: (2011)