Cargando…
Contrastive self-supervised representation learning without negative samples for multimodal human action recognition
Action recognition is an important component of human-computer interaction, and multimodal feature representation and learning methods can be used to improve recognition performance due to the interrelation and complementarity between different modalities. However, due to the lack of large-scale lab...
Autores principales: | Yang, Huaigang, Ren, Ziliang, Yuan, Huaqiang, Xu, Zhenyu, Zhou, Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10354269/ https://www.ncbi.nlm.nih.gov/pubmed/37476841 http://dx.doi.org/10.3389/fnins.2023.1225312 |
Ejemplares similares
-
Multi-scale and attention enhanced graph convolution network for skeleton-based violence action recognition
por: Yang, Huaigang, et al.
Publicado: (2022) -
Self-supervised representation learning for surgical activity recognition
por: Paysan, Daniel, et al.
Publicado: (2021) -
ConMLP: MLP-Based Self-Supervised Contrastive Learning for Skeleton Data Analysis and Action Recognition
por: Dai, Chuan, et al.
Publicado: (2023) -
Applying Self-Supervised Representation Learning for Emotion Recognition Using Physiological Signals
por: Montero Quispe, Kevin G., et al.
Publicado: (2022) -
Self-Supervised Action Representation Learning Based on Asymmetric Skeleton Data Augmentation
por: Zhou, Hualing, et al.
Publicado: (2022)