Cargando…
Understanding structure-guided variant effect predictions using 3D convolutional neural networks
Predicting pathogenicity of missense variants in molecular diagnostics remains a challenge despite the available wealth of data, such as evolutionary information, and the wealth of tools to integrate that data. We describe DeepRank-Mut, a configurable framework designed to extract and learn from phy...
Autores principales: | Ramakrishnan, Gayatri, Baakman, Coos, Heijl, Stephan, Vroling, Bas, van Horck, Ragna, Hiraki, Jeffrey, Xue, Li C., Huynen, Martijn A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10354367/ https://www.ncbi.nlm.nih.gov/pubmed/37475887 http://dx.doi.org/10.3389/fmolb.2023.1204157 |
Ejemplares similares
-
Automatic interictal epileptiform discharge (IED) detection based on convolutional neural network (CNN)
por: Zhang, Ling, et al.
Publicado: (2023) -
Ranking-Based Convolutional Neural Network Models for Peptide-MHC Class I Binding Prediction
por: Chen, Ziqi, et al.
Publicado: (2021) -
Automatic BASED scoring on scalp EEG in children with infantile spasms using convolutional neural network
por: Fan, Yuying, et al.
Publicado: (2022) -
Integration of Random Forest Classifiers and Deep Convolutional Neural Networks for Classification and Biomolecular Modeling of Cancer Driver Mutations
por: Agajanian, Steve, et al.
Publicado: (2019) -
Homology modelling and spectroscopy, a never-ending love story
por: Venselaar, Hanka, et al.
Publicado: (2009)