Cargando…

Recent Advances in Nanotherapeutics for Neurological Disorders

[Image: see text] Neurological disorders remain a significant health and economic burden worldwide. Addressing the challenges imposed by existing drugs, associated side- effects, and immune responses in neurodegenerative diseases is essential for developing better therapies. The immune activation in...

Descripción completa

Detalles Bibliográficos
Autores principales: Vashist, Arti, Manickam, Pandiaraj, Raymond, Andrea D., Arias, Adriana Yndart, Kolishetti, Nagesh, Vashist, Atul, Arias, Emanuel, Nair, Madhavan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10354745/
https://www.ncbi.nlm.nih.gov/pubmed/37368486
http://dx.doi.org/10.1021/acsabm.3c00254
Descripción
Sumario:[Image: see text] Neurological disorders remain a significant health and economic burden worldwide. Addressing the challenges imposed by existing drugs, associated side- effects, and immune responses in neurodegenerative diseases is essential for developing better therapies. The immune activation in a diseased state has complex treatment protocols and results in hurdles for clinical translation. There is an immense need for the development of multifunctional nanotherapeutics with various properties to address the different limitations and immune interactions exhibited by the existing therapeutics. Nanotechnology has proven its potential to improve therapeutic delivery and enhance efficacy. Promising advancements have been made in developing nanotherapies that can be combined with CRISPR/Cas9 or siRNA for a targeted approach with unique potential for clinical translation. Engineering natural exosomes derived from mesenchymal stem cells (MSCs), dendritic cells (DCs), or macrophages to both deliver therapeutics and modulate the immune responses to tumors or in neurodegenerative disease (ND) can allow for targeted personalized therapeutic approaches. In the present review, we summarize and overview the recent advances in nanotherapeutics in addressing the existing treatment limitations and neuroimmune interactions for developing ND therapies and provide insights into the upcoming advancements in nanotechnology-based nanocarriers.