Cargando…
Pitstop‐2 and its novel derivative RVD‐127 disrupt global cell dynamics and nuclear pores integrity by direct interaction with small GTPases
Clathrin‐mediated endocytosis (CME) is an essential cell physiological process of broad biomedical relevance. Since the recent introduction of Pitstop‐2 as a potent CME inhibitor, we and others have reported on substantial clathrin‐independent inhibitory effects. Herein, we developed and experimenta...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10354767/ https://www.ncbi.nlm.nih.gov/pubmed/37476059 http://dx.doi.org/10.1002/btm2.10425 |
_version_ | 1785074992063447040 |
---|---|
author | Liashkovich, Ivan Stefanello, Sílvio Terra Vidyadharan, Reshma Haufe, Günter Erofeev, Alexander Gorelkin, Peter V. Kolmogorov, Vasilii Mizdal, Caren Rigon Dulebo, Alexander Bulk, Etmar Kouzel, Ian U. Shahin, Victor |
author_facet | Liashkovich, Ivan Stefanello, Sílvio Terra Vidyadharan, Reshma Haufe, Günter Erofeev, Alexander Gorelkin, Peter V. Kolmogorov, Vasilii Mizdal, Caren Rigon Dulebo, Alexander Bulk, Etmar Kouzel, Ian U. Shahin, Victor |
author_sort | Liashkovich, Ivan |
collection | PubMed |
description | Clathrin‐mediated endocytosis (CME) is an essential cell physiological process of broad biomedical relevance. Since the recent introduction of Pitstop‐2 as a potent CME inhibitor, we and others have reported on substantial clathrin‐independent inhibitory effects. Herein, we developed and experimentally validated a novel fluorescent derivative of Pitstop‐2, termed RVD‐127, to clarify Pitstop‐2 diverse effects. Using RVD‐127, we were able to trace additional protein targets of Pitstop‐2. Besides inhibiting CME, Pitstop‐2 and RVD‐127 proved to directly and reversibly bind to at least two members of the small GTPase superfamily Ran and Rac1 with particularly high efficacy. Binding locks the GTPases in a guanosine diphosphate (GDP)‐like conformation disabling their interaction with their downstream effectors. Consequently, overall cell motility, mechanics and nucleocytoplasmic transport integrity are rapidly disrupted at inhibitor concentrations well below those required to significantly reduce CME. We conclude that Pitstop‐2 is a highly potent, reversible inhibitor of small GTPases. The inhibition of these molecular switches of diverse crucial signaling pathways, including nucleocytoplasmic transport and overall cell dynamics and motility, clarifies the diversity of Pitstop‐2 activities. Moreover, considering the fundamental importance and broad implications of small GTPases in physiology, pathophysiology and drug development, Pitstop‐2 and RVD‐127 open up novel avenues. |
format | Online Article Text |
id | pubmed-10354767 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley & Sons, Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-103547672023-07-20 Pitstop‐2 and its novel derivative RVD‐127 disrupt global cell dynamics and nuclear pores integrity by direct interaction with small GTPases Liashkovich, Ivan Stefanello, Sílvio Terra Vidyadharan, Reshma Haufe, Günter Erofeev, Alexander Gorelkin, Peter V. Kolmogorov, Vasilii Mizdal, Caren Rigon Dulebo, Alexander Bulk, Etmar Kouzel, Ian U. Shahin, Victor Bioeng Transl Med Research Articles Clathrin‐mediated endocytosis (CME) is an essential cell physiological process of broad biomedical relevance. Since the recent introduction of Pitstop‐2 as a potent CME inhibitor, we and others have reported on substantial clathrin‐independent inhibitory effects. Herein, we developed and experimentally validated a novel fluorescent derivative of Pitstop‐2, termed RVD‐127, to clarify Pitstop‐2 diverse effects. Using RVD‐127, we were able to trace additional protein targets of Pitstop‐2. Besides inhibiting CME, Pitstop‐2 and RVD‐127 proved to directly and reversibly bind to at least two members of the small GTPase superfamily Ran and Rac1 with particularly high efficacy. Binding locks the GTPases in a guanosine diphosphate (GDP)‐like conformation disabling their interaction with their downstream effectors. Consequently, overall cell motility, mechanics and nucleocytoplasmic transport integrity are rapidly disrupted at inhibitor concentrations well below those required to significantly reduce CME. We conclude that Pitstop‐2 is a highly potent, reversible inhibitor of small GTPases. The inhibition of these molecular switches of diverse crucial signaling pathways, including nucleocytoplasmic transport and overall cell dynamics and motility, clarifies the diversity of Pitstop‐2 activities. Moreover, considering the fundamental importance and broad implications of small GTPases in physiology, pathophysiology and drug development, Pitstop‐2 and RVD‐127 open up novel avenues. John Wiley & Sons, Inc. 2022-10-19 /pmc/articles/PMC10354767/ /pubmed/37476059 http://dx.doi.org/10.1002/btm2.10425 Text en © 2022 The Authors. Bioengineering & Translational Medicine published by Wiley Periodicals LLC on behalf of American Institute of Chemical Engineers. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Liashkovich, Ivan Stefanello, Sílvio Terra Vidyadharan, Reshma Haufe, Günter Erofeev, Alexander Gorelkin, Peter V. Kolmogorov, Vasilii Mizdal, Caren Rigon Dulebo, Alexander Bulk, Etmar Kouzel, Ian U. Shahin, Victor Pitstop‐2 and its novel derivative RVD‐127 disrupt global cell dynamics and nuclear pores integrity by direct interaction with small GTPases |
title | Pitstop‐2 and its novel derivative RVD‐127 disrupt global cell dynamics and nuclear pores integrity by direct interaction with small GTPases
|
title_full | Pitstop‐2 and its novel derivative RVD‐127 disrupt global cell dynamics and nuclear pores integrity by direct interaction with small GTPases
|
title_fullStr | Pitstop‐2 and its novel derivative RVD‐127 disrupt global cell dynamics and nuclear pores integrity by direct interaction with small GTPases
|
title_full_unstemmed | Pitstop‐2 and its novel derivative RVD‐127 disrupt global cell dynamics and nuclear pores integrity by direct interaction with small GTPases
|
title_short | Pitstop‐2 and its novel derivative RVD‐127 disrupt global cell dynamics and nuclear pores integrity by direct interaction with small GTPases
|
title_sort | pitstop‐2 and its novel derivative rvd‐127 disrupt global cell dynamics and nuclear pores integrity by direct interaction with small gtpases |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10354767/ https://www.ncbi.nlm.nih.gov/pubmed/37476059 http://dx.doi.org/10.1002/btm2.10425 |
work_keys_str_mv | AT liashkovichivan pitstop2anditsnovelderivativervd127disruptglobalcelldynamicsandnuclearporesintegritybydirectinteractionwithsmallgtpases AT stefanellosilvioterra pitstop2anditsnovelderivativervd127disruptglobalcelldynamicsandnuclearporesintegritybydirectinteractionwithsmallgtpases AT vidyadharanreshma pitstop2anditsnovelderivativervd127disruptglobalcelldynamicsandnuclearporesintegritybydirectinteractionwithsmallgtpases AT haufegunter pitstop2anditsnovelderivativervd127disruptglobalcelldynamicsandnuclearporesintegritybydirectinteractionwithsmallgtpases AT erofeevalexander pitstop2anditsnovelderivativervd127disruptglobalcelldynamicsandnuclearporesintegritybydirectinteractionwithsmallgtpases AT gorelkinpeterv pitstop2anditsnovelderivativervd127disruptglobalcelldynamicsandnuclearporesintegritybydirectinteractionwithsmallgtpases AT kolmogorovvasilii pitstop2anditsnovelderivativervd127disruptglobalcelldynamicsandnuclearporesintegritybydirectinteractionwithsmallgtpases AT mizdalcarenrigon pitstop2anditsnovelderivativervd127disruptglobalcelldynamicsandnuclearporesintegritybydirectinteractionwithsmallgtpases AT duleboalexander pitstop2anditsnovelderivativervd127disruptglobalcelldynamicsandnuclearporesintegritybydirectinteractionwithsmallgtpases AT bulketmar pitstop2anditsnovelderivativervd127disruptglobalcelldynamicsandnuclearporesintegritybydirectinteractionwithsmallgtpases AT kouzelianu pitstop2anditsnovelderivativervd127disruptglobalcelldynamicsandnuclearporesintegritybydirectinteractionwithsmallgtpases AT shahinvictor pitstop2anditsnovelderivativervd127disruptglobalcelldynamicsandnuclearporesintegritybydirectinteractionwithsmallgtpases |