Cargando…
The origin of overpotential in lithium-mediated nitrogen reduction
The verification of the lithium-mediated nitrogen reduction system in 2019 has led to an explosion in the literature focussing on improving the metrics of faradaic efficiency, stability, and activity. However, while the literature acknowledges the vast intrinsic overpotential for nitrogen reduction...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10354832/ https://www.ncbi.nlm.nih.gov/pubmed/37089070 http://dx.doi.org/10.1039/d2fd00156j |
_version_ | 1785075005621534720 |
---|---|
author | Westhead, O. Tort, R. Spry, M. Rietbrock, J. Jervis, R. Grimaud, A. Bagger, A. Stephens, I. E. L. |
author_facet | Westhead, O. Tort, R. Spry, M. Rietbrock, J. Jervis, R. Grimaud, A. Bagger, A. Stephens, I. E. L. |
author_sort | Westhead, O. |
collection | PubMed |
description | The verification of the lithium-mediated nitrogen reduction system in 2019 has led to an explosion in the literature focussing on improving the metrics of faradaic efficiency, stability, and activity. However, while the literature acknowledges the vast intrinsic overpotential for nitrogen reduction due to the reliance on in situ lithium plating, it has thus far been difficult to accurately quantify this overpotential and effectively analyse further voltage losses. In this work, we present a simple method for determining the Reversible Hydrogen Electrode (RHE) potential in the lithium-mediated nitrogen reduction system. This method allows for an investigation of the Nernst equation and reveals sources of potential losses. These are namely the solvation of the lithium ion in the electrolyte and resistive losses due to the formation of the solid electrolyte interphase. The minimum observed overpotential was achieved in a 0.6 M LiClO(4), 0.5 vol% ethanol in tetrahydrofuran electrolyte. This was −3.59 ± 0.07 V vs. RHE, with a measured faradaic efficiency of 6.5 ± 0.2%. Our method allows for easy comparison between the lithium-mediated system and other nitrogen reduction paradigms, including biological and homogeneous mechanisms. |
format | Online Article Text |
id | pubmed-10354832 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-103548322023-07-20 The origin of overpotential in lithium-mediated nitrogen reduction Westhead, O. Tort, R. Spry, M. Rietbrock, J. Jervis, R. Grimaud, A. Bagger, A. Stephens, I. E. L. Faraday Discuss Chemistry The verification of the lithium-mediated nitrogen reduction system in 2019 has led to an explosion in the literature focussing on improving the metrics of faradaic efficiency, stability, and activity. However, while the literature acknowledges the vast intrinsic overpotential for nitrogen reduction due to the reliance on in situ lithium plating, it has thus far been difficult to accurately quantify this overpotential and effectively analyse further voltage losses. In this work, we present a simple method for determining the Reversible Hydrogen Electrode (RHE) potential in the lithium-mediated nitrogen reduction system. This method allows for an investigation of the Nernst equation and reveals sources of potential losses. These are namely the solvation of the lithium ion in the electrolyte and resistive losses due to the formation of the solid electrolyte interphase. The minimum observed overpotential was achieved in a 0.6 M LiClO(4), 0.5 vol% ethanol in tetrahydrofuran electrolyte. This was −3.59 ± 0.07 V vs. RHE, with a measured faradaic efficiency of 6.5 ± 0.2%. Our method allows for easy comparison between the lithium-mediated system and other nitrogen reduction paradigms, including biological and homogeneous mechanisms. The Royal Society of Chemistry 2022-11-29 /pmc/articles/PMC10354832/ /pubmed/37089070 http://dx.doi.org/10.1039/d2fd00156j Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry Westhead, O. Tort, R. Spry, M. Rietbrock, J. Jervis, R. Grimaud, A. Bagger, A. Stephens, I. E. L. The origin of overpotential in lithium-mediated nitrogen reduction |
title | The origin of overpotential in lithium-mediated nitrogen reduction |
title_full | The origin of overpotential in lithium-mediated nitrogen reduction |
title_fullStr | The origin of overpotential in lithium-mediated nitrogen reduction |
title_full_unstemmed | The origin of overpotential in lithium-mediated nitrogen reduction |
title_short | The origin of overpotential in lithium-mediated nitrogen reduction |
title_sort | origin of overpotential in lithium-mediated nitrogen reduction |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10354832/ https://www.ncbi.nlm.nih.gov/pubmed/37089070 http://dx.doi.org/10.1039/d2fd00156j |
work_keys_str_mv | AT westheado theoriginofoverpotentialinlithiummediatednitrogenreduction AT tortr theoriginofoverpotentialinlithiummediatednitrogenreduction AT sprym theoriginofoverpotentialinlithiummediatednitrogenreduction AT rietbrockj theoriginofoverpotentialinlithiummediatednitrogenreduction AT jervisr theoriginofoverpotentialinlithiummediatednitrogenreduction AT grimauda theoriginofoverpotentialinlithiummediatednitrogenreduction AT baggera theoriginofoverpotentialinlithiummediatednitrogenreduction AT stephensiel theoriginofoverpotentialinlithiummediatednitrogenreduction AT westheado originofoverpotentialinlithiummediatednitrogenreduction AT tortr originofoverpotentialinlithiummediatednitrogenreduction AT sprym originofoverpotentialinlithiummediatednitrogenreduction AT rietbrockj originofoverpotentialinlithiummediatednitrogenreduction AT jervisr originofoverpotentialinlithiummediatednitrogenreduction AT grimauda originofoverpotentialinlithiummediatednitrogenreduction AT baggera originofoverpotentialinlithiummediatednitrogenreduction AT stephensiel originofoverpotentialinlithiummediatednitrogenreduction |