Cargando…
Development of a deep learning-based error detection system without error dose maps in the patient-specific quality assurance of volumetric modulated arc therapy
To detect errors in patient-specific quality assurance (QA) for volumetric modulated arc therapy (VMAT), we proposed an error detection method based on dose distribution analysis using unsupervised deep learning approach and analyzed 161 prostate VMAT beams measured with a cylindrical detector. For...
Autores principales: | Kimura, Yuto, Kadoya, Noriyuki, Oku, Yohei, Jingu, Keiichi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10354858/ https://www.ncbi.nlm.nih.gov/pubmed/37177789 http://dx.doi.org/10.1093/jrr/rrad028 |
Ejemplares similares
-
Patient-Specific Quality Assurance Using Monte Carlo Dose Calculation and Elekta Log Files for Prostate Volumetric-Modulated Arc Therapy
por: Katsuta, Yoshiyuki, et al.
Publicado: (2017) -
Improvement of deep learning prediction model in patient‐specific QA for VMAT with MLC leaf position map and patient's dose distribution
por: Tozuka, Ryota, et al.
Publicado: (2023) -
Evaluation of deep learning-based deliverable VMAT plan generated by prototype software for automated planning for prostate cancer patients
por: Kadoya, Noriyuki, et al.
Publicado: (2023) -
Comparisons of volumetric modulated arc therapy (VMAT) quality assurance (QA) systems: sensitivity analysis to machine errors
por: Liang, Bin, et al.
Publicado: (2016) -
Sensitivity of Three Patient-Specific Quality Assurance Systems to
MLC Aperture Errors With Volumetric Modulated Arc Therapy
por: Hu, Jinyou, et al.
Publicado: (2022)