Cargando…
Use of unsupervised machine learning to characterise HIV predictors in sub-Saharan Africa
INTRODUCTION: Significant regional variations in the HIV epidemic hurt effective common interventions in sub-Saharan Africa. It is crucial to analyze HIV positivity distributions within clusters and assess the homogeneity of countries. We aim at identifying clusters of countries based on socio-behav...
Autores principales: | Mutai, Charles K., McSharry, Patrick E., Ngaruye, Innocent, Musabanganji, Edouard |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10354889/ https://www.ncbi.nlm.nih.gov/pubmed/37468851 http://dx.doi.org/10.1186/s12879-023-08467-7 |
Ejemplares similares
-
Use of machine learning techniques to identify HIV predictors for screening in sub-Saharan Africa
por: Mutai, Charles K., et al.
Publicado: (2021) -
The Challenge of HIV/AIDS in Sub-Saharan Africa
por: Gilks, Charles F
Publicado: (1999) -
Women and HIV in Sub-Saharan Africa
por: Ramjee, Gita, et al.
Publicado: (2013) -
Peanuts, Aflatoxins and Undernutrition in Children in Sub-Saharan Africa
por: Mupunga, Innocent, et al.
Publicado: (2017) -
Malaria Attributable to the HIV-1 Epidemic, Sub-Saharan Africa
por: Korenromp, Eline L., et al.
Publicado: (2005)