Cargando…

Elucidating the effects of organic vs. conventional cropping practice and rhizobia inoculation on rhizosphere microbial diversity and yield of peanut

Legumes such as peanut (Arachis hypogea) can fulfill most of their nitrogen requirement by symbiotic association with nitrogen-fixing bacteria, rhizobia. Nutrient availability is largely determined by microbial diversity and activity in the rhizosphere that influences plant health, nutrition, and cr...

Descripción completa

Detalles Bibliográficos
Autores principales: Paudel, Dev, Wang, Liping, Poudel, Ravin, Acharya, Janam P, Victores, Samantha, de Souza, Cleber Henrique Lopes, Rios, Esteban, Wang, Jianping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10355010/
https://www.ncbi.nlm.nih.gov/pubmed/37464442
http://dx.doi.org/10.1186/s40793-023-00517-6
Descripción
Sumario:Legumes such as peanut (Arachis hypogea) can fulfill most of their nitrogen requirement by symbiotic association with nitrogen-fixing bacteria, rhizobia. Nutrient availability is largely determined by microbial diversity and activity in the rhizosphere that influences plant health, nutrition, and crop yield, as well as soil quality and soil fertility. However, our understanding of the complex effects of microbial diversity and rhizobia inoculation on crop yields of different peanut cultivars under organic versus conventional farming systems is extremely limited. In this research, we studied the impacts of conventional vs. organic cultivation practices and inoculation with commercial vs. single strain inoculum on peanut yield and soil microbial diversity of five peanut cultivars. The experiment was set up in the field following a split-split-plot design. Our results from the 16 S microbiome sequencing showed considerable variations of microbial composition between the cultivation types and inoculum, indicating a preferential association of microbes to peanut roots with various inoculum and cropping system. Alpha diversity indices (chao1, Shannon diversity, and Simpson index) of soil microbiome were generally higher in plots with organic than conventional inorganic practices. The cultivation type and inoculum explained significant differences among bacterial communities. Taxonomic classification revealed two phyla, TM6 and Firmicutes were significantly represented in inorganic as compared to organic soil, where significant phyla were Armatimonadetes, Gemmatimonadetes, Nitrospirae, Proteobacteria, Verrucomicrobia, and WS3. Yields in the organic cultivation system decreased by 10–93% of the yields in the inorganic cultivation system. Cultivar G06 and T511 consistently showed relative high yields in both organic and inorganic trials. Our results show significant two-way interactions between cultivation type and genotype for most of the trait data collected. Therefore, it is critical for farmers to choose varieties based on their cultivation practices. Our results showed that bacterial structure was more uniform in organic fields and microbial diversity in legumes was reduced in inorganic fields. This research provided guides for farmers and scientists to improve peanut yield while promoting microbial diversity and increasing sustainability. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40793-023-00517-6.