Cargando…
Force field-inspired transformer network assisted crystal density prediction for energetic materials
Machine learning has great potential in predicting chemical information with greater precision than traditional methods. Graph neural networks (GNNs) have become increasingly popular in recent years, as they can automatically learn the features of the molecule from the graph, significantly reducing...
Autores principales: | Jin, Jun-Xuan, Ren, Gao-Peng, Hu, Jianjian, Liu, Yingzhe, Gao, Yunhu, Wu, Ke-Jun, He, Yuchen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10355066/ https://www.ncbi.nlm.nih.gov/pubmed/37468954 http://dx.doi.org/10.1186/s13321-023-00736-6 |
Ejemplares similares
-
Force field-inspired molecular representation learning for property prediction
por: Ren, Gao-Peng, et al.
Publicado: (2023) -
Novel Random Forest
Ensemble Modeling Strategy Combined
with Quantitative Structure–Property Relationship for Density
Prediction of Energetic Materials
por: Li, Maogang, et al.
Publicado: (2023) -
In-situ nano-crystal-to-crystal transformation synthesis of energetic materials based on three 5,5′-azotetrazolate Cr(III) salts
por: Miao, Yu, et al.
Publicado: (2016) -
Noncovalent Interactions and Crystal Structure Prediction of Energetic Materials
por: Liu, Yan, et al.
Publicado: (2022) -
Comparative Studies on Thermal Decompositions of Dinitropyrazole-Based Energetic Materials
por: Zhou, Jing, et al.
Publicado: (2021)