Cargando…

Electric-field frictional effects in confined zwitterionic molecules

We theoretically explore the effect of a transverse electric field on the frictional response of a bi-layer of packed zwitterionic molecules. The dipole-moment reorientation promoted by the electric field can lead to either stick-slip or smooth sliding dynamics, with average shear stress values vary...

Descripción completa

Detalles Bibliográficos
Autores principales: Gianetti, Melisa M., Guerra, Roberto, Vanossi, Andrea, Urbakh, Michael, Manini, Nicola
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10355170/
https://www.ncbi.nlm.nih.gov/pubmed/37417921
http://dx.doi.org/10.1039/d3cp00914a
Descripción
Sumario:We theoretically explore the effect of a transverse electric field on the frictional response of a bi-layer of packed zwitterionic molecules. The dipole-moment reorientation promoted by the electric field can lead to either stick-slip or smooth sliding dynamics, with average shear stress values varying over a wide range. A structure–property relation is revealed by investigating the array of molecules and their mutual orientation and interlocking. Moreover, the thermal friction enhancement previously observed in these molecules is shown to be suppressed by the electric field, recovering the expected thermolubricity at large-enough fields. The same holds for other basic tribological quantities, such as the external load, which can influence friction in opposite ways depending on the strength of the applied electric field. Our findings open a route for the reversible control of friction forces via electric polarization of the sliding surface.