Cargando…
Historical visit attendance as predictor of treatment interruption in South African HIV patients: Extension of a validated machine learning model
Retention of antiretroviral (ART) patients is a priority for achieving HIV epidemic control in South Africa. While machine-learning methods are being increasingly utilised to identify high risk populations for suboptimal HIV service utilisation, they are limited in terms of explaining relationships...
Autores principales: | Esra, Rachel T., Carstens, Jacques, Estill, Janne, Stoch, Ricky, Le Roux, Sue, Mabuto, Tonderai, Eisenstein, Michael, Keiser, Olivia, Maskew, Mhari, Fox, Matthew P., De Voux, Lucien, Sharpey-Schafer, Kieran |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10355459/ https://www.ncbi.nlm.nih.gov/pubmed/37467217 http://dx.doi.org/10.1371/journal.pgph.0002105 |
Ejemplares similares
-
Applying machine learning and predictive modeling to retention and viral suppression in South African HIV treatment cohorts
por: Maskew, Mhairi, et al.
Publicado: (2022) -
Effective Interpersonal Health Communication for Linkage to Care After HIV Diagnosis in South Africa
por: Mabuto, Tonderai, et al.
Publicado: (2017) -
Prediction of HIV status based on socio-behavioural characteristics in East and Southern Africa
por: Orel, Erol, et al.
Publicado: (2022) -
Geospatial model of COVID-19 spreading and vaccination with event Gillespie algorithm
por: Temerev, Alexander, et al.
Publicado: (2022) -
“That makes me feel human”: a qualitative evaluation of the acceptability of an HIV differentiated care intervention for formerly incarcerated people re-entering community settings in South Africa
por: An, Yangxi, et al.
Publicado: (2022)