Cargando…
Machine Learning for Mortality Prediction in Patients With Heart Failure With Mildly Reduced Ejection Fraction
BACKGROUND: Machine‐learning‐based prediction models (MLBPMs) have shown satisfactory performance in predicting clinical outcomes in patients with heart failure with reduced and preserved ejection fraction. However, their usefulness has yet to be fully elucidated in patients with heart failure with...
Autores principales: | Tian, Pengchao, Liang, Lin, Zhao, Xuemei, Huang, Boping, Feng, Jiayu, Huang, Liyan, Huang, Yan, Zhai, Mei, Zhou, Qiong, Zhang, Jian, Zhang, Yuhui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10356044/ https://www.ncbi.nlm.nih.gov/pubmed/37301744 http://dx.doi.org/10.1161/JAHA.122.029124 |
Ejemplares similares
-
D‐dimer and outcomes in hospitalized heart failure patients across the ejection fraction phenotypes
por: Huang, Liyan, et al.
Publicado: (2022) -
Clinical characteristics of patients with heart failure and intracardiac thrombus
por: Zhai, Mei, et al.
Publicado: (2022) -
Predictive value of remnant cholesterol level for all-cause mortality in heart failure patients
por: Zhao, Lang, et al.
Publicado: (2023) -
Prognostic value of RDW alone and in combination with NT‐proBNP in patients with heart failure
por: Liang, Lin, et al.
Publicado: (2022) -
Hyponatremia and lower normal serum sodium levels are associated with an increased risk of all‐cause death in heart failure patients
por: Zhao, Lang, et al.
Publicado: (2023)