Cargando…
Using deep learning to predict survival outcome in non-surgical cervical cancer patients based on pathological images
PURPOSE: We analyzed clinical features and the representative HE-stained pathologic images to predict 5-year overall survival via the deep-learning approach in cervical cancer patients in order to assist oncologists in designing the optimal treatment strategies. METHODS: The research retrospectively...
Autores principales: | Zhang, Kun, Sun, Kui, Zhang, Caiyi, Ren, Kang, Li, Chao, Shen, Lin, Jing, Di |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10356676/ https://www.ncbi.nlm.nih.gov/pubmed/36653539 http://dx.doi.org/10.1007/s00432-022-04446-8 |
Ejemplares similares
-
The pathological risk score: A new deep learning‐based signature for predicting survival in cervical cancer
por: Chen, Chi, et al.
Publicado: (2022) -
Recognizing pathology of renal tumor from macroscopic cross-section image by deep learning
por: Lin, Zefang, et al.
Publicado: (2023) -
Pathological Features and Surgical Strategies of Cervical Deformity
por: Sun, Xiangyao, et al.
Publicado: (2020) -
Deep Learning-Based Multi-Class Classification of Breast Digital Pathology Images
por: Mi, Weiming, et al.
Publicado: (2021) -
Predicting the recurrence and overall survival of patients with glioma based on histopathological images using deep learning
por: Luo, Chenhua, et al.
Publicado: (2023)