Cargando…
Prediction of anti-microtubular target proteins of tubulins and their interacting proteins using Gene Ontology tools
BACKGROUND: Tubulins are highly conserved globular proteins involved in stabilization of cellular cytoskeletal microtubules during cell cycle. Different isoforms of tubulins are differentially expressed in various cell types, and their protein–protein interactions (PPIs) analysis will help in identi...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10356719/ https://www.ncbi.nlm.nih.gov/pubmed/37466845 http://dx.doi.org/10.1186/s43141-023-00531-8 |
_version_ | 1785075338188947456 |
---|---|
author | Ramesh Babu, Polani B. |
author_facet | Ramesh Babu, Polani B. |
author_sort | Ramesh Babu, Polani B. |
collection | PubMed |
description | BACKGROUND: Tubulins are highly conserved globular proteins involved in stabilization of cellular cytoskeletal microtubules during cell cycle. Different isoforms of tubulins are differentially expressed in various cell types, and their protein–protein interactions (PPIs) analysis will help in identifying the anti-microtubular drug targets for cancer and neurological disorders. Numerous web-based PPIs analysis methods are recently being used, and in this paper, I used Gene Ontology (GO) tools, e.g., Stringbase, ProteomeHD, GeneMANIA, and ShinyGO, to identify anti-microtubular target proteins by selecting strongly interacting proteins of tubulins. RESULTS: I used 6 different human tubulin isoforms (two from each of α-, β-, and γ-tubulin) and found several thousands of node-to-node protein interactions (highest 4956 in GeneMANIA) and selected top 10 strongly interacting node-to-node interactions with highest score, which included 7 tubulin family protein and 6 non-tubulin family proteins (total 13). Functional enrichment analysis indicated a significant role of these 13 proteins in nucleation, polymerization or depolymerization of microtubules, membrane tethering and docking, dorsal root ganglion development, mitotic cycle, and cytoskeletal organization. I found γ-tubulins (TUBG1, TUBGCP4, and TUBBGCP6) were known to contribute majorly for tubulin-associated functions followed by α-tubulin (TUBA1A) and β-tubulins (TUBB AND TUBB3). In PPI results, I found several non-tubular proteins interacting with tubulins, and six of them (HTT, DPYSL2, SKI, UNC5C, NINL, and DDX41) were found closely associated with their functions. CONCLUSIONS: Increasing number of regulatory proteins and subpopulation of tubulin proteins are being reported with poor understanding in their association with microtubule assembly and disassembly. The functional enrichment analysis of tubulin isoforms using recent GO tools resulted in identification of γ-tubulins playing a key role in microtubule functions and observed non-tubulin family of proteins HTT, DPYSL2, SKI, UNC5C, NINL, and DDX41 strongly interacting functional proteins of tubulins. The present study yields a promising model system using GO tools to narrow down tubulin-associated proteins as a drug target in cancer, Alzheimer’s, neurological disorders, etc. |
format | Online Article Text |
id | pubmed-10356719 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-103567192023-07-21 Prediction of anti-microtubular target proteins of tubulins and their interacting proteins using Gene Ontology tools Ramesh Babu, Polani B. J Genet Eng Biotechnol Research BACKGROUND: Tubulins are highly conserved globular proteins involved in stabilization of cellular cytoskeletal microtubules during cell cycle. Different isoforms of tubulins are differentially expressed in various cell types, and their protein–protein interactions (PPIs) analysis will help in identifying the anti-microtubular drug targets for cancer and neurological disorders. Numerous web-based PPIs analysis methods are recently being used, and in this paper, I used Gene Ontology (GO) tools, e.g., Stringbase, ProteomeHD, GeneMANIA, and ShinyGO, to identify anti-microtubular target proteins by selecting strongly interacting proteins of tubulins. RESULTS: I used 6 different human tubulin isoforms (two from each of α-, β-, and γ-tubulin) and found several thousands of node-to-node protein interactions (highest 4956 in GeneMANIA) and selected top 10 strongly interacting node-to-node interactions with highest score, which included 7 tubulin family protein and 6 non-tubulin family proteins (total 13). Functional enrichment analysis indicated a significant role of these 13 proteins in nucleation, polymerization or depolymerization of microtubules, membrane tethering and docking, dorsal root ganglion development, mitotic cycle, and cytoskeletal organization. I found γ-tubulins (TUBG1, TUBGCP4, and TUBBGCP6) were known to contribute majorly for tubulin-associated functions followed by α-tubulin (TUBA1A) and β-tubulins (TUBB AND TUBB3). In PPI results, I found several non-tubular proteins interacting with tubulins, and six of them (HTT, DPYSL2, SKI, UNC5C, NINL, and DDX41) were found closely associated with their functions. CONCLUSIONS: Increasing number of regulatory proteins and subpopulation of tubulin proteins are being reported with poor understanding in their association with microtubule assembly and disassembly. The functional enrichment analysis of tubulin isoforms using recent GO tools resulted in identification of γ-tubulins playing a key role in microtubule functions and observed non-tubulin family of proteins HTT, DPYSL2, SKI, UNC5C, NINL, and DDX41 strongly interacting functional proteins of tubulins. The present study yields a promising model system using GO tools to narrow down tubulin-associated proteins as a drug target in cancer, Alzheimer’s, neurological disorders, etc. Springer Berlin Heidelberg 2023-07-19 /pmc/articles/PMC10356719/ /pubmed/37466845 http://dx.doi.org/10.1186/s43141-023-00531-8 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Research Ramesh Babu, Polani B. Prediction of anti-microtubular target proteins of tubulins and their interacting proteins using Gene Ontology tools |
title | Prediction of anti-microtubular target proteins of tubulins and their interacting proteins using Gene Ontology tools |
title_full | Prediction of anti-microtubular target proteins of tubulins and their interacting proteins using Gene Ontology tools |
title_fullStr | Prediction of anti-microtubular target proteins of tubulins and their interacting proteins using Gene Ontology tools |
title_full_unstemmed | Prediction of anti-microtubular target proteins of tubulins and their interacting proteins using Gene Ontology tools |
title_short | Prediction of anti-microtubular target proteins of tubulins and their interacting proteins using Gene Ontology tools |
title_sort | prediction of anti-microtubular target proteins of tubulins and their interacting proteins using gene ontology tools |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10356719/ https://www.ncbi.nlm.nih.gov/pubmed/37466845 http://dx.doi.org/10.1186/s43141-023-00531-8 |
work_keys_str_mv | AT rameshbabupolanib predictionofantimicrotubulartargetproteinsoftubulinsandtheirinteractingproteinsusinggeneontologytools |