Cargando…
A framework for comparative study of databases and computational methods for arrhythmia detection from single-lead ECG
Arrhythmia detection from ECG is an important area of computational ECG analysis. However, although a large number of public ECG recordings are available, most research uses only few datasets, making it difficult to estimate the generalizability of the plethora of ECG classification methods. Further...
Autores principales: | Merdjanovska, Elena, Rashkovska, Aleksandra |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10356811/ https://www.ncbi.nlm.nih.gov/pubmed/37468574 http://dx.doi.org/10.1038/s41598-023-38532-9 |
Ejemplares similares
-
Medical-Grade ECG Sensor for Long-Term Monitoring
por: Rashkovska, Aleksandra, et al.
Publicado: (2020) -
Power Autonomy Estimation of Low-Power Sensor for Long-Term ECG Monitoring
por: Bregar, Klemen, et al.
Publicado: (2022) -
A 12-Lead ECG database to identify origins of idiopathic ventricular arrhythmia containing 334 patients
por: Zheng, Jianwei, et al.
Publicado: (2020) -
ECG Classification for Detecting ECG Arrhythmia Empowered with Deep Learning Approaches
por: Rahman, Atta-ur, et al.
Publicado: (2022) -
Learning Explainable Time-Morphology Patterns for Automatic Arrhythmia Classification from Short Single-Lead ECGs
por: Lee, Hyeonjeong, et al.
Publicado: (2021)