Cargando…

Effects of Very Low- and High-Frequency Subthalamic Stimulation on Motor Cortical Oscillations During Rhythmic Lower-Limb Movements in Parkinson’s Disease Patients

BACKGROUND: Standard high-frequency deep brain stimulation (HF-DBS) at the subthalamic nucleus (STN) is less effective for lower-limb motor dysfunctions in Parkinson’s disease (PD) patients. However, the effects of very low frequency (VLF; 4 Hz)-DBS on lower-limb movement and motor cortical oscillat...

Descripción completa

Detalles Bibliográficos
Autores principales: Bosch, Taylor J., Cole, Rachel C., Bezchlibnyk, Yarema, Flouty, Oliver, Singh, Arun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: IOS Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10357137/
https://www.ncbi.nlm.nih.gov/pubmed/37092236
http://dx.doi.org/10.3233/JPD-225113
_version_ 1785075429468536832
author Bosch, Taylor J.
Cole, Rachel C.
Bezchlibnyk, Yarema
Flouty, Oliver
Singh, Arun
author_facet Bosch, Taylor J.
Cole, Rachel C.
Bezchlibnyk, Yarema
Flouty, Oliver
Singh, Arun
author_sort Bosch, Taylor J.
collection PubMed
description BACKGROUND: Standard high-frequency deep brain stimulation (HF-DBS) at the subthalamic nucleus (STN) is less effective for lower-limb motor dysfunctions in Parkinson’s disease (PD) patients. However, the effects of very low frequency (VLF; 4 Hz)-DBS on lower-limb movement and motor cortical oscillations have not been compared. OBJECTIVE: To compare the effects of VLF-DBS and HF-DBS at the STN on a lower-limb pedaling motor task and motor cortical oscillations in patients with PD and with and without freezing of gait (FOG). METHODS: Thirteen PD patients with bilateral STN-DBS performed a cue-triggered lower-limb pedaling motor task with electroencephalography (EEG) in OFF-DBS, VLF-DBS (4 Hz), and HF-DBS (120-175 Hz) states. We performed spectral analysis on the preparatory signals and compared GO-cue-triggered theta and movement-related beta oscillations over motor cortical regions across DBS conditions in PD patients and subgroups (PDFOG–and PDFOG+). RESULTS: Both VLF-DBS and HF-DBS decreased the linear speed of the pedaling task in PD, and HF-DBS decreased speed in both PDFOG–and PDFOG+. Preparatory theta and beta activities were increased with both stimulation frequencies. Both DBS frequencies increased motor cortical theta activity during pedaling movement in PD patients, but this increase was only observed in the PDFOG + group. Beta activity was not significantly different from OFF-DBS at either frequency regardless of FOG status. CONCLUSION: Results suggest that VL and HF DBS may induce similar effects on lower-limb kinematics by impairing movement speed and modulating motor cortical oscillations in the lower frequency band.
format Online
Article
Text
id pubmed-10357137
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher IOS Press
record_format MEDLINE/PubMed
spelling pubmed-103571372023-07-21 Effects of Very Low- and High-Frequency Subthalamic Stimulation on Motor Cortical Oscillations During Rhythmic Lower-Limb Movements in Parkinson’s Disease Patients Bosch, Taylor J. Cole, Rachel C. Bezchlibnyk, Yarema Flouty, Oliver Singh, Arun J Parkinsons Dis Research Report BACKGROUND: Standard high-frequency deep brain stimulation (HF-DBS) at the subthalamic nucleus (STN) is less effective for lower-limb motor dysfunctions in Parkinson’s disease (PD) patients. However, the effects of very low frequency (VLF; 4 Hz)-DBS on lower-limb movement and motor cortical oscillations have not been compared. OBJECTIVE: To compare the effects of VLF-DBS and HF-DBS at the STN on a lower-limb pedaling motor task and motor cortical oscillations in patients with PD and with and without freezing of gait (FOG). METHODS: Thirteen PD patients with bilateral STN-DBS performed a cue-triggered lower-limb pedaling motor task with electroencephalography (EEG) in OFF-DBS, VLF-DBS (4 Hz), and HF-DBS (120-175 Hz) states. We performed spectral analysis on the preparatory signals and compared GO-cue-triggered theta and movement-related beta oscillations over motor cortical regions across DBS conditions in PD patients and subgroups (PDFOG–and PDFOG+). RESULTS: Both VLF-DBS and HF-DBS decreased the linear speed of the pedaling task in PD, and HF-DBS decreased speed in both PDFOG–and PDFOG+. Preparatory theta and beta activities were increased with both stimulation frequencies. Both DBS frequencies increased motor cortical theta activity during pedaling movement in PD patients, but this increase was only observed in the PDFOG + group. Beta activity was not significantly different from OFF-DBS at either frequency regardless of FOG status. CONCLUSION: Results suggest that VL and HF DBS may induce similar effects on lower-limb kinematics by impairing movement speed and modulating motor cortical oscillations in the lower frequency band. IOS Press 2023-06-13 /pmc/articles/PMC10357137/ /pubmed/37092236 http://dx.doi.org/10.3233/JPD-225113 Text en © 2023 – The authors. Published by IOS Press https://creativecommons.org/licenses/by-nc/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC 4.0) License (https://creativecommons.org/licenses/by-nc/4.0/) , which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Report
Bosch, Taylor J.
Cole, Rachel C.
Bezchlibnyk, Yarema
Flouty, Oliver
Singh, Arun
Effects of Very Low- and High-Frequency Subthalamic Stimulation on Motor Cortical Oscillations During Rhythmic Lower-Limb Movements in Parkinson’s Disease Patients
title Effects of Very Low- and High-Frequency Subthalamic Stimulation on Motor Cortical Oscillations During Rhythmic Lower-Limb Movements in Parkinson’s Disease Patients
title_full Effects of Very Low- and High-Frequency Subthalamic Stimulation on Motor Cortical Oscillations During Rhythmic Lower-Limb Movements in Parkinson’s Disease Patients
title_fullStr Effects of Very Low- and High-Frequency Subthalamic Stimulation on Motor Cortical Oscillations During Rhythmic Lower-Limb Movements in Parkinson’s Disease Patients
title_full_unstemmed Effects of Very Low- and High-Frequency Subthalamic Stimulation on Motor Cortical Oscillations During Rhythmic Lower-Limb Movements in Parkinson’s Disease Patients
title_short Effects of Very Low- and High-Frequency Subthalamic Stimulation on Motor Cortical Oscillations During Rhythmic Lower-Limb Movements in Parkinson’s Disease Patients
title_sort effects of very low- and high-frequency subthalamic stimulation on motor cortical oscillations during rhythmic lower-limb movements in parkinson’s disease patients
topic Research Report
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10357137/
https://www.ncbi.nlm.nih.gov/pubmed/37092236
http://dx.doi.org/10.3233/JPD-225113
work_keys_str_mv AT boschtaylorj effectsofverylowandhighfrequencysubthalamicstimulationonmotorcorticaloscillationsduringrhythmiclowerlimbmovementsinparkinsonsdiseasepatients
AT colerachelc effectsofverylowandhighfrequencysubthalamicstimulationonmotorcorticaloscillationsduringrhythmiclowerlimbmovementsinparkinsonsdiseasepatients
AT bezchlibnykyarema effectsofverylowandhighfrequencysubthalamicstimulationonmotorcorticaloscillationsduringrhythmiclowerlimbmovementsinparkinsonsdiseasepatients
AT floutyoliver effectsofverylowandhighfrequencysubthalamicstimulationonmotorcorticaloscillationsduringrhythmiclowerlimbmovementsinparkinsonsdiseasepatients
AT singharun effectsofverylowandhighfrequencysubthalamicstimulationonmotorcorticaloscillationsduringrhythmiclowerlimbmovementsinparkinsonsdiseasepatients