Cargando…

Synthesis and Crystal Structures of Bis(diallydithiocarbamato)zinc(II) and Silver(I) Complexes: Precursors for Zinc Sulfide and Silver Sulfide Nanophotocatalysts

[Image: see text] We report the preparation and crystal structures of bis(diallydithiocarbamato)zinc(II) and silver(I) complexes. The compounds were used as single-source precursors to prepare zinc sulfide and silver sulfide nanophotocatalysts. The molecular structure of bis(diallydithiocarbamato)zi...

Descripción completa

Detalles Bibliográficos
Autores principales: Ajibade, Peter A., Mbuyazi, Thandi B., Paca, Athandwe M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10357456/
https://www.ncbi.nlm.nih.gov/pubmed/37483185
http://dx.doi.org/10.1021/acsomega.2c07490
_version_ 1785075498510974976
author Ajibade, Peter A.
Mbuyazi, Thandi B.
Paca, Athandwe M.
author_facet Ajibade, Peter A.
Mbuyazi, Thandi B.
Paca, Athandwe M.
author_sort Ajibade, Peter A.
collection PubMed
description [Image: see text] We report the preparation and crystal structures of bis(diallydithiocarbamato)zinc(II) and silver(I) complexes. The compounds were used as single-source precursors to prepare zinc sulfide and silver sulfide nanophotocatalysts. The molecular structure of bis(diallydithiocarbamato)zinc(II) consists of a dimeric complex in which each zinc(II) ion asymmetrically coordinates with two diallydithiocarbamato anions in a bidentate chelating mode, and the centrosymmetrically related molecule is bridged through the S-atom that is chelated to the adjacent zinc(II) ion to form a distorted trigonal bipyramidal geometry around the zinc(II) ions. The molecular structure of bis(diallydithiocarbamato)silver(I) formed a cluster complex consisting of a trimetric Ag(3)S(3) molecule in which the diallydithiocarbamato ligand is coordinated to all the Ag(I) ions. The complexes were thermolyzed in dodecylamine, hexadecylamine, and octadecylamine (ODA) to prepare zinc sulfide and silver sulfide nanoparticles. The powder X-ray diffraction patterns of the zinc sulfide nanoparticles correspond to the hexagonal wurtzite while silver sulfide is in the acanthite crystalline phase. The high-resolution transmission electron microscopy images show that quantum dot zinc sulfide nanoparticles are obtained with particle sizes ranging between 1.98 and 5.49 nm, whereas slightly bigger silver sulfide nanoparticles are obtained with particle sizes of 2.70–13.69 nm. The surface morphologies of the ZnS and AgS nanoparticles capped with the same capping agent are very similar. Optical studies revealed that the absorption band edges of the as-prepared zinc sulfide and silver sulfide nanoparticles were blue-shifted with respect to their bulk materials with some surface defects. The zinc sulfide and silver sulfide nanoparticles were used as nanophotocatalysts for the degradation of bromothymol blue (BTB) and bromophenol blue (BPB). ODA-capped zinc sulfide is the most efficient photocatalyst and degraded 87% of BTB and 91% of BPB.
format Online
Article
Text
id pubmed-10357456
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-103574562023-07-21 Synthesis and Crystal Structures of Bis(diallydithiocarbamato)zinc(II) and Silver(I) Complexes: Precursors for Zinc Sulfide and Silver Sulfide Nanophotocatalysts Ajibade, Peter A. Mbuyazi, Thandi B. Paca, Athandwe M. ACS Omega [Image: see text] We report the preparation and crystal structures of bis(diallydithiocarbamato)zinc(II) and silver(I) complexes. The compounds were used as single-source precursors to prepare zinc sulfide and silver sulfide nanophotocatalysts. The molecular structure of bis(diallydithiocarbamato)zinc(II) consists of a dimeric complex in which each zinc(II) ion asymmetrically coordinates with two diallydithiocarbamato anions in a bidentate chelating mode, and the centrosymmetrically related molecule is bridged through the S-atom that is chelated to the adjacent zinc(II) ion to form a distorted trigonal bipyramidal geometry around the zinc(II) ions. The molecular structure of bis(diallydithiocarbamato)silver(I) formed a cluster complex consisting of a trimetric Ag(3)S(3) molecule in which the diallydithiocarbamato ligand is coordinated to all the Ag(I) ions. The complexes were thermolyzed in dodecylamine, hexadecylamine, and octadecylamine (ODA) to prepare zinc sulfide and silver sulfide nanoparticles. The powder X-ray diffraction patterns of the zinc sulfide nanoparticles correspond to the hexagonal wurtzite while silver sulfide is in the acanthite crystalline phase. The high-resolution transmission electron microscopy images show that quantum dot zinc sulfide nanoparticles are obtained with particle sizes ranging between 1.98 and 5.49 nm, whereas slightly bigger silver sulfide nanoparticles are obtained with particle sizes of 2.70–13.69 nm. The surface morphologies of the ZnS and AgS nanoparticles capped with the same capping agent are very similar. Optical studies revealed that the absorption band edges of the as-prepared zinc sulfide and silver sulfide nanoparticles were blue-shifted with respect to their bulk materials with some surface defects. The zinc sulfide and silver sulfide nanoparticles were used as nanophotocatalysts for the degradation of bromothymol blue (BTB) and bromophenol blue (BPB). ODA-capped zinc sulfide is the most efficient photocatalyst and degraded 87% of BTB and 91% of BPB. American Chemical Society 2023-07-06 /pmc/articles/PMC10357456/ /pubmed/37483185 http://dx.doi.org/10.1021/acsomega.2c07490 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Ajibade, Peter A.
Mbuyazi, Thandi B.
Paca, Athandwe M.
Synthesis and Crystal Structures of Bis(diallydithiocarbamato)zinc(II) and Silver(I) Complexes: Precursors for Zinc Sulfide and Silver Sulfide Nanophotocatalysts
title Synthesis and Crystal Structures of Bis(diallydithiocarbamato)zinc(II) and Silver(I) Complexes: Precursors for Zinc Sulfide and Silver Sulfide Nanophotocatalysts
title_full Synthesis and Crystal Structures of Bis(diallydithiocarbamato)zinc(II) and Silver(I) Complexes: Precursors for Zinc Sulfide and Silver Sulfide Nanophotocatalysts
title_fullStr Synthesis and Crystal Structures of Bis(diallydithiocarbamato)zinc(II) and Silver(I) Complexes: Precursors for Zinc Sulfide and Silver Sulfide Nanophotocatalysts
title_full_unstemmed Synthesis and Crystal Structures of Bis(diallydithiocarbamato)zinc(II) and Silver(I) Complexes: Precursors for Zinc Sulfide and Silver Sulfide Nanophotocatalysts
title_short Synthesis and Crystal Structures of Bis(diallydithiocarbamato)zinc(II) and Silver(I) Complexes: Precursors for Zinc Sulfide and Silver Sulfide Nanophotocatalysts
title_sort synthesis and crystal structures of bis(diallydithiocarbamato)zinc(ii) and silver(i) complexes: precursors for zinc sulfide and silver sulfide nanophotocatalysts
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10357456/
https://www.ncbi.nlm.nih.gov/pubmed/37483185
http://dx.doi.org/10.1021/acsomega.2c07490
work_keys_str_mv AT ajibadepetera synthesisandcrystalstructuresofbisdiallydithiocarbamatozinciiandsilvericomplexesprecursorsforzincsulfideandsilversulfidenanophotocatalysts
AT mbuyazithandib synthesisandcrystalstructuresofbisdiallydithiocarbamatozinciiandsilvericomplexesprecursorsforzincsulfideandsilversulfidenanophotocatalysts
AT pacaathandwem synthesisandcrystalstructuresofbisdiallydithiocarbamatozinciiandsilvericomplexesprecursorsforzincsulfideandsilversulfidenanophotocatalysts