Cargando…

Development and Characterization of Pentaerythritol-EudragitRS100 Co-processed Excipients as Solid Dispersion Carriers for Enhanced Aqueous Solubility, In Vitro Dissolution, and Ex Vivo Permeation of Atorvastatin

[Image: see text] Atorvastatin (ATV), a lipid-lowering agent, has low oral bioavailability due to its poor water solubility, permeability, and low dissolution rate. Therefore, pentaerythritol-EudragitRS100 co-processed excipients (PECE) were synthesized, and their feasibility as solid dispersion car...

Descripción completa

Detalles Bibliográficos
Autores principales: Telange, Darshan R., Bhaktani, Neha M., Hemke, Atul T., Pethe, Anil M., Agrawal, Surendra S., Rarokar, Nilesh R., Jain, Shirish P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10357539/
https://www.ncbi.nlm.nih.gov/pubmed/37483203
http://dx.doi.org/10.1021/acsomega.3c02280
Descripción
Sumario:[Image: see text] Atorvastatin (ATV), a lipid-lowering agent, has low oral bioavailability due to its poor water solubility, permeability, and low dissolution rate. Therefore, pentaerythritol-EudragitRS100 co-processed excipients (PECE) were synthesized, and their feasibility as solid dispersion carriers (ATV-PECE-SD) for improving the solubility, permeability, and dissolution rate of ATV was explored. Solid dispersions were assessed in terms of particle size and zeta potential, and solubility, in vitro dissolution, and ex vivo permeation studies were studied. Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), and powder X-ray diffraction (PXRD) were used as characterization tools. ATV-PECE-SD3 (1:4) formulations exhibited a small particle size with high stability. Physicochemical evaluation evidenced the formation of solid dispersion due to the involvement of weak electrostatic interaction between the polar functional groups of ATV and PECE carriers. ATV-PECE-SD3 (1:4) significantly enhanced the water solubility by ∼43-fold compared to pure ATV. In vitro dissolution studies showed that optimized formulation enhanced the dissolution rate of ATV compared to pure ATV. Ex vivo permeation results revealed that ATV-PECE-SD3 (1:4) enhanced the permeation rate of ATV compared to pure ATV. The optimized formulations significantly improved the dissolution rate of ATV in the fed state due to the food effect and micelle formation mechanism compared to the fasted state. The study concludes that co-processed excipients could be used as promising solid dispersion carriers to enhance the aqueous solubility, permeability, and dissolution rate of ATV.