Cargando…

Research on Coal Gangue Recognition Based on Multi-source Time–Frequency Domain Feature Fusion

[Image: see text] The over-exploitation of resources caused by the increasing coal demand has resulted in a sharp increase in solid waste emissions mainly gangue, which has made the burden on the environment, economy, resources, and society of our country heavier. In order to achieve a balance betwe...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Yao, Yang, Yang, Zeng, Qingliang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10357572/
https://www.ncbi.nlm.nih.gov/pubmed/37483240
http://dx.doi.org/10.1021/acsomega.3c02319
_version_ 1785075519959597056
author Zhang, Yao
Yang, Yang
Zeng, Qingliang
author_facet Zhang, Yao
Yang, Yang
Zeng, Qingliang
author_sort Zhang, Yao
collection PubMed
description [Image: see text] The over-exploitation of resources caused by the increasing coal demand has resulted in a sharp increase in solid waste emissions mainly gangue, which has made the burden on the environment, economy, resources, and society of our country heavier. In order to achieve a balance between energy consumption and solid waste emission in the process of top coal caving, this study carried out coal gangue recognition research based on multi-source time–frequency domain feature fusion (MS-TFDF-F). First, the process of coal gangue symbiosis and the harm of gangue in top coal caving are analyzed, and the fundamental method of comprehensive treatment of gangue is put forward, which is the accurate recognition of the coal gangue interface. Second, by building a top coal caving simulation test bed, the MS signals generated in the caving process of the coal gangue mixture with a gangue content of 0–100% are collected and the TFDFs are extracted. Third, the MS-TFDF-F-based coal gangue recognition model is established. Then, the recognition effect of the two TFDF-F sample sets was compared, and the results show that the time–frequency domain feature selection fusion method (TFDFS-FM) has higher accuracy. On this basis, this paper studies the variation law of the number of sensors on the coal gangue recognition accuracy of MS information fusion. Finally, the economic, social, environmental, and resource benefits of the model are qualitatively described. The final results show that the MS-TFDF-F-based coal gangue recognition model has the strongest recognition ability when fusing six sensor signals, and the recognition accuracy reaches 99% under the AdaBoost algorithm. The establishment of this model brings huge benefits to China’s environment, economy, resources, and society, and it is helpful to realize the balance between loss reduction mining and solid waste emission reduction in the process of top coal caving.
format Online
Article
Text
id pubmed-10357572
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-103575722023-07-21 Research on Coal Gangue Recognition Based on Multi-source Time–Frequency Domain Feature Fusion Zhang, Yao Yang, Yang Zeng, Qingliang ACS Omega [Image: see text] The over-exploitation of resources caused by the increasing coal demand has resulted in a sharp increase in solid waste emissions mainly gangue, which has made the burden on the environment, economy, resources, and society of our country heavier. In order to achieve a balance between energy consumption and solid waste emission in the process of top coal caving, this study carried out coal gangue recognition research based on multi-source time–frequency domain feature fusion (MS-TFDF-F). First, the process of coal gangue symbiosis and the harm of gangue in top coal caving are analyzed, and the fundamental method of comprehensive treatment of gangue is put forward, which is the accurate recognition of the coal gangue interface. Second, by building a top coal caving simulation test bed, the MS signals generated in the caving process of the coal gangue mixture with a gangue content of 0–100% are collected and the TFDFs are extracted. Third, the MS-TFDF-F-based coal gangue recognition model is established. Then, the recognition effect of the two TFDF-F sample sets was compared, and the results show that the time–frequency domain feature selection fusion method (TFDFS-FM) has higher accuracy. On this basis, this paper studies the variation law of the number of sensors on the coal gangue recognition accuracy of MS information fusion. Finally, the economic, social, environmental, and resource benefits of the model are qualitatively described. The final results show that the MS-TFDF-F-based coal gangue recognition model has the strongest recognition ability when fusing six sensor signals, and the recognition accuracy reaches 99% under the AdaBoost algorithm. The establishment of this model brings huge benefits to China’s environment, economy, resources, and society, and it is helpful to realize the balance between loss reduction mining and solid waste emission reduction in the process of top coal caving. American Chemical Society 2023-07-05 /pmc/articles/PMC10357572/ /pubmed/37483240 http://dx.doi.org/10.1021/acsomega.3c02319 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Zhang, Yao
Yang, Yang
Zeng, Qingliang
Research on Coal Gangue Recognition Based on Multi-source Time–Frequency Domain Feature Fusion
title Research on Coal Gangue Recognition Based on Multi-source Time–Frequency Domain Feature Fusion
title_full Research on Coal Gangue Recognition Based on Multi-source Time–Frequency Domain Feature Fusion
title_fullStr Research on Coal Gangue Recognition Based on Multi-source Time–Frequency Domain Feature Fusion
title_full_unstemmed Research on Coal Gangue Recognition Based on Multi-source Time–Frequency Domain Feature Fusion
title_short Research on Coal Gangue Recognition Based on Multi-source Time–Frequency Domain Feature Fusion
title_sort research on coal gangue recognition based on multi-source time–frequency domain feature fusion
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10357572/
https://www.ncbi.nlm.nih.gov/pubmed/37483240
http://dx.doi.org/10.1021/acsomega.3c02319
work_keys_str_mv AT zhangyao researchoncoalganguerecognitionbasedonmultisourcetimefrequencydomainfeaturefusion
AT yangyang researchoncoalganguerecognitionbasedonmultisourcetimefrequencydomainfeaturefusion
AT zengqingliang researchoncoalganguerecognitionbasedonmultisourcetimefrequencydomainfeaturefusion