Cargando…
A self-learning Monte Carlo tree search algorithm for robot path planning
This paper proposes a self-learning Monte Carlo tree search algorithm (SL-MCTS), which has the ability to continuously improve its problem-solving ability in single-player scenarios. SL-MCTS combines the MCTS algorithm with a two-branch neural network (PV-Network). The MCTS architecture can balance...
Autores principales: | Li, Wei, Liu, Yi, Ma, Yan, Xu, Kang, Qiu, Jiang, Gan, Zhongxue |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10358331/ https://www.ncbi.nlm.nih.gov/pubmed/37483541 http://dx.doi.org/10.3389/fnbot.2023.1039644 |
Ejemplares similares
-
Learning the Fastest RNA Folding Path Based on Reinforcement Learning and Monte Carlo Tree Search
por: Mao, Kangkun, et al.
Publicado: (2021) -
Retrosynthetic planning with experience-guided Monte Carlo tree search
por: Hong, Siqi, et al.
Publicado: (2023) -
Autonomous maneuver decision-making method based on reinforcement learning and Monte Carlo tree search
por: Zhang, Hongpeng, et al.
Publicado: (2022) -
From bandits to monte-carlo tree search: the optimistic principle applied to optimization and planning
por: Munos, Rémi
Publicado: (2014) -
A survey of path planning of industrial robots based on rapidly exploring random trees
por: Luo, Sha, et al.
Publicado: (2023)