Cargando…

Presence of an ultra-small microbiome in fermented cabbages

BACKGROUND: Ultramicrobacteria (UMB), also known as ultra-small bacteria, are tiny bacteria with a size less than 0.1 µm(3). They have a high surface-to-volume ratio and are found in various ecosystems, including the human body. UMB can be classified into two types: one formed through cell contracti...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Hae-Won, Yoon, So-Ra, Dang, Yun-Mi, Kang, Miran, Lee, Kwangho, Ha, Ji-Hyung, Bae, Jin-Woo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10358336/
https://www.ncbi.nlm.nih.gov/pubmed/37483986
http://dx.doi.org/10.7717/peerj.15680
_version_ 1785075641350094848
author Lee, Hae-Won
Yoon, So-Ra
Dang, Yun-Mi
Kang, Miran
Lee, Kwangho
Ha, Ji-Hyung
Bae, Jin-Woo
author_facet Lee, Hae-Won
Yoon, So-Ra
Dang, Yun-Mi
Kang, Miran
Lee, Kwangho
Ha, Ji-Hyung
Bae, Jin-Woo
author_sort Lee, Hae-Won
collection PubMed
description BACKGROUND: Ultramicrobacteria (UMB), also known as ultra-small bacteria, are tiny bacteria with a size less than 0.1 µm(3). They have a high surface-to-volume ratio and are found in various ecosystems, including the human body. UMB can be classified into two types: one formed through cell contraction and the other that maintains a small size. The ultra-small microbiome (USM), which may contain UMB, includes all bacteria less than 0.2 µm in size and is difficult to detect with current methods. However, it poses a potential threat to food hygiene, as it can pass through sterilization filters and exist in a viable but non-culturable (VBNC) state. The data on the USM of foods is limited. Some bacteria, including pathogenic species, are capable of forming UMB under harsh conditions, making it difficult to detect them through conventional culture techniques. METHODS: The study described above focused on exploring the diversity of USM in fermented cabbage samples from three different countries (South Korea, China, and Germany). The samples of fermented cabbage (kimchi, suancai, and sauerkraut) were purchased and stored in chilled conditions at approximately 4 °C until filtration. The filtration process involved two steps of tangential flow filtration (TFF) using TFF cartridges with different pore sizes (0.2 µm and 100 kDa) to separate normal size bacteria (NM) and USM. The USM and NM isolated via TFF were stored in a refrigerator at 4 °C until DNA extraction. The extracted DNA was then amplified using PCR and the full-length 16S rRNA gene was sequenced using single-molecule-real-time (SMRT) sequencing. The transmission electron microscope (TEM) was used to confirm the presence of microorganisms in the USM of fermented cabbage samples. RESULTS: To the best of our knowledge, this is the first study to identify the differences between USM and NM in fermented cabbages. Although the size of the USM (average 2,171,621 bp) was smaller than that of the NM (average 15,727,282 bp), diversity in USM (average H′ = 1.32) was not lower than that in NM (average H′ = 1.22). In addition, some members in USM probably underwent cell shrinkage due to unfavorable environments, while others maintained their size. Major pathogens were not detected in the USM in fermented cabbages. Nevertheless, several potentially suspicious strains (genera Cellulomonas and Ralstonia) were detected. Our method can be used to screen food materials for the presence of USM undetectable via conventional methods. USM and NM were efficiently separated using tangential flow filtration and analyzed via single-molecule real-time sequencing. The USM of fermented vegetables exhibited differences in size, diversity, and composition compared with the conventional microbiome. This study could provide new insights into the ultra-small ecosystem in fermented foods, including fermented cabbages.
format Online
Article
Text
id pubmed-10358336
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher PeerJ Inc.
record_format MEDLINE/PubMed
spelling pubmed-103583362023-07-21 Presence of an ultra-small microbiome in fermented cabbages Lee, Hae-Won Yoon, So-Ra Dang, Yun-Mi Kang, Miran Lee, Kwangho Ha, Ji-Hyung Bae, Jin-Woo PeerJ Food Science and Technology BACKGROUND: Ultramicrobacteria (UMB), also known as ultra-small bacteria, are tiny bacteria with a size less than 0.1 µm(3). They have a high surface-to-volume ratio and are found in various ecosystems, including the human body. UMB can be classified into two types: one formed through cell contraction and the other that maintains a small size. The ultra-small microbiome (USM), which may contain UMB, includes all bacteria less than 0.2 µm in size and is difficult to detect with current methods. However, it poses a potential threat to food hygiene, as it can pass through sterilization filters and exist in a viable but non-culturable (VBNC) state. The data on the USM of foods is limited. Some bacteria, including pathogenic species, are capable of forming UMB under harsh conditions, making it difficult to detect them through conventional culture techniques. METHODS: The study described above focused on exploring the diversity of USM in fermented cabbage samples from three different countries (South Korea, China, and Germany). The samples of fermented cabbage (kimchi, suancai, and sauerkraut) were purchased and stored in chilled conditions at approximately 4 °C until filtration. The filtration process involved two steps of tangential flow filtration (TFF) using TFF cartridges with different pore sizes (0.2 µm and 100 kDa) to separate normal size bacteria (NM) and USM. The USM and NM isolated via TFF were stored in a refrigerator at 4 °C until DNA extraction. The extracted DNA was then amplified using PCR and the full-length 16S rRNA gene was sequenced using single-molecule-real-time (SMRT) sequencing. The transmission electron microscope (TEM) was used to confirm the presence of microorganisms in the USM of fermented cabbage samples. RESULTS: To the best of our knowledge, this is the first study to identify the differences between USM and NM in fermented cabbages. Although the size of the USM (average 2,171,621 bp) was smaller than that of the NM (average 15,727,282 bp), diversity in USM (average H′ = 1.32) was not lower than that in NM (average H′ = 1.22). In addition, some members in USM probably underwent cell shrinkage due to unfavorable environments, while others maintained their size. Major pathogens were not detected in the USM in fermented cabbages. Nevertheless, several potentially suspicious strains (genera Cellulomonas and Ralstonia) were detected. Our method can be used to screen food materials for the presence of USM undetectable via conventional methods. USM and NM were efficiently separated using tangential flow filtration and analyzed via single-molecule real-time sequencing. The USM of fermented vegetables exhibited differences in size, diversity, and composition compared with the conventional microbiome. This study could provide new insights into the ultra-small ecosystem in fermented foods, including fermented cabbages. PeerJ Inc. 2023-07-17 /pmc/articles/PMC10358336/ /pubmed/37483986 http://dx.doi.org/10.7717/peerj.15680 Text en ©2023 Lee et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited.
spellingShingle Food Science and Technology
Lee, Hae-Won
Yoon, So-Ra
Dang, Yun-Mi
Kang, Miran
Lee, Kwangho
Ha, Ji-Hyung
Bae, Jin-Woo
Presence of an ultra-small microbiome in fermented cabbages
title Presence of an ultra-small microbiome in fermented cabbages
title_full Presence of an ultra-small microbiome in fermented cabbages
title_fullStr Presence of an ultra-small microbiome in fermented cabbages
title_full_unstemmed Presence of an ultra-small microbiome in fermented cabbages
title_short Presence of an ultra-small microbiome in fermented cabbages
title_sort presence of an ultra-small microbiome in fermented cabbages
topic Food Science and Technology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10358336/
https://www.ncbi.nlm.nih.gov/pubmed/37483986
http://dx.doi.org/10.7717/peerj.15680
work_keys_str_mv AT leehaewon presenceofanultrasmallmicrobiomeinfermentedcabbages
AT yoonsora presenceofanultrasmallmicrobiomeinfermentedcabbages
AT dangyunmi presenceofanultrasmallmicrobiomeinfermentedcabbages
AT kangmiran presenceofanultrasmallmicrobiomeinfermentedcabbages
AT leekwangho presenceofanultrasmallmicrobiomeinfermentedcabbages
AT hajihyung presenceofanultrasmallmicrobiomeinfermentedcabbages
AT baejinwoo presenceofanultrasmallmicrobiomeinfermentedcabbages