Cargando…
Inside out: transforming images of lab-grown plants for machine learning applications in agriculture
INTRODUCTION: Machine learning tasks often require a significant amount of training data for the resultant network to perform suitably for a given problem in any domain. In agriculture, dataset sizes are further limited by phenotypical differences between two plants of the same genotype, often as a...
Autores principales: | Krosney, Alexander E., Sotoodeh, Parsa, Henry, Christopher J., Beck, Michael A., Bidinosti, Christopher P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10358354/ https://www.ncbi.nlm.nih.gov/pubmed/37483870 http://dx.doi.org/10.3389/frai.2023.1200977 |
Ejemplares similares
-
Leveraging Guided Backpropagation to Select Convolutional Neural Networks for Plant Classification
por: Mostafa, Sakib, et al.
Publicado: (2022) -
Editorial: Computer vision in plant phenotyping and agriculture
por: Stavness, Ian, et al.
Publicado: (2023) -
Combining different points of view on plant descriptions: mapping agricultural plant roles and biological taxa
por: Amardeilh, Florence, et al.
Publicado: (2023) -
Impact of Box-Cox Transformation on Machine-Learning Algorithms
por: Blum, Luca, et al.
Publicado: (2022) -
Prediction of E. coli Concentrations in Agricultural Pond Waters: Application and Comparison of Machine Learning Algorithms
por: Stocker, Matthew D., et al.
Publicado: (2022)