Cargando…
Numerical and experimental studies of gas–liquid flow and pressure drop in multiphase pump valves
A numerical and experimental study was carried out to investigate the two-phase flow fields of the typical three valves used in the multiphase pumps. Under the gas volume fraction conditions in the range of 0%–100%, the three-dimensional steady and dynamic two-phase flow characteristics, pressure dr...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10358604/ https://www.ncbi.nlm.nih.gov/pubmed/32680443 http://dx.doi.org/10.1177/0036850420940885 |
Sumario: | A numerical and experimental study was carried out to investigate the two-phase flow fields of the typical three valves used in the multiphase pumps. Under the gas volume fraction conditions in the range of 0%–100%, the three-dimensional steady and dynamic two-phase flow characteristics, pressure drops, and their multipliers of the ball valve, cone valve, and disk valve were studied, respectively, using Eulerian–Eulerian approach and dynamic grid technique in ANSYS FLUENT. In addition, a valve test system was built to verify the simulated results by the particle image velocimetry and pressure test. The flow coefficient C(Q) (about 0.989) of the disk valve is greater than those of the other valves (about 0.864) under the steady flow with a high Reynolds number. The two-phase pressure drops of the three valves fluctuate in different forms with the vibration of the cores during the dynamic opening. The two-phase multipliers of the fully opened ball valve are consistent with the predicted values of the Morris model, while those of the cone valve and disk valve had the smallest differences with the predicted values of the Chisholm model. Through the comprehensive analysis of the flow performance, pressure drop, and dynamic stability of the three pump valves, the disk valve is found to be more suitable for the multiphase pumps due to its smaller axial space, resistance loss, and better flow capacity. |
---|