Cargando…
Sliding mode control of continuous-time switched systems with signal quantization and actuator nonlinearity
This article investigates sliding mode control for a class of continuous-time switched systems with signal quantization, actuator nonlinearity and persistent dwell-time switching that can guarantee the globally uniformly asymptotical stability of the closed-loop system. First, a sliding surface is d...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10358615/ https://www.ncbi.nlm.nih.gov/pubmed/32188371 http://dx.doi.org/10.1177/0036850420912150 |
Sumario: | This article investigates sliding mode control for a class of continuous-time switched systems with signal quantization, actuator nonlinearity and persistent dwell-time switching that can guarantee the globally uniformly asymptotical stability of the closed-loop system. First, a sliding surface is devised for the switched system and sufficient conditions are proposed to ensure the globally uniformly asymptotical stability of the sliding motion equation by utilizing multiple Lyapunov function technique. Second, the sliding mode control laws, based on the parameters of quantizer, actuator nonlinearity and disturbance, are devised to stabilize the closed-loop systems. Moreover, sufficient conditions are given to guarantee the devised sliding surface’s reachability. Finally, the superiority and effectiveness of developed results is illustrated via a numerical simulation. |
---|