Cargando…
Convolutional neural network with Huffman pooling for handling data with insufficient categories: A novel method for anomaly detection and fault diagnosis
The rotating component is an important part of the modern mechanical equipment, and its health status has a great impact on whether the equipment can safely operate. In recent years, convolutional neural network has been widely used to identify the health status of the rotor system. Previous studies...
Autores principales: | Li, Yuqing, Lei, Mingjia, Cheng, Yao, Wang, Rixin, Xu, Minqiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10358713/ https://www.ncbi.nlm.nih.gov/pubmed/36344222 http://dx.doi.org/10.1177/00368504221135457 |
Ejemplares similares
-
A Novel Framework for Anomaly Detection for Satellite Momentum Wheel Based on Optimized SVM and Huffman-Multi-Scale Entropy
por: Li, Yuqing, et al.
Publicado: (2021) -
An Innovative Huffman Forest-Based Method to Detected Railroad Station Anomalies
por: Wang, Yuan, et al.
Publicado: (2022) -
An improved multi-scale branching convolutional neural network for rolling bearing fault diagnosis
por: Xu, Meng, et al.
Publicado: (2023) -
An Online Data-Driven Fault Diagnosis Method for Air Handling Units by Rule and Convolutional Neural Networks
por: Liao, Huanyue, et al.
Publicado: (2021) -
Symbolic Important Point Perceptually and Hidden Markov Model Based Hydraulic Pump Fault Diagnosis Method
por: Jia, Yunzhao, et al.
Publicado: (2018)