Cargando…
Deep learning auto-segmentation on multi-sequence magnetic resonance images for upper abdominal organs
INTRODUCTION: Multi-sequence multi-parameter MRIs are often used to define targets and/or organs at risk (OAR) in radiation therapy (RT) planning. Deep learning has so far focused on developing auto-segmentation models based on a single MRI sequence. The purpose of this work is to develop a multi-se...
Autores principales: | Amjad, Asma, Xu, Jiaofeng, Thill, Dan, Zhang, Ying, Ding, Jie, Paulson, Eric, Hall, William, Erickson, Beth A., Li, X. Allen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10358771/ https://www.ncbi.nlm.nih.gov/pubmed/37483486 http://dx.doi.org/10.3389/fonc.2023.1209558 |
Ejemplares similares
-
Automatic Contour Refinement for Deep Learning Auto-segmentation of Complex Organs in MRI-guided Adaptive Radiation Therapy
por: Ding, Jie, et al.
Publicado: (2022) -
Deep learning‐based auto segmentation using generative adversarial network on magnetic resonance images obtained for head and neck cancer patients
por: Kawahara, Daisuke, et al.
Publicado: (2022) -
Auto-segmentation for total marrow irradiation
por: Watkins, William Tyler, et al.
Publicado: (2022) -
Comprehensive clinical evaluation of deep learning-based auto-segmentation for radiotherapy in patients with cervical cancer
por: Chung, Seung Yeun, et al.
Publicado: (2023) -
Deep learning auto-segmentation of cervical skeletal muscle for sarcopenia analysis in patients with head and neck cancer
por: Naser, Mohamed A., et al.
Publicado: (2022)