Cargando…
An interpretable single-cell RNA sequencing data clustering method based on latent Dirichlet allocation
Single-cell RNA sequencing (scRNA-seq) detects whole transcriptome signals for large amounts of individual cells and is powerful for determining cell-to-cell differences and investigating the functional characteristics of various cell types. scRNA-seq datasets are usually sparse and highly noisy. Ma...
Autores principales: | Yang, Qi, Xu, Zhaochun, Zhou, Wenyang, Wang, Pingping, Jiang, Qinghua, Juan, Liran |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10359080/ https://www.ncbi.nlm.nih.gov/pubmed/37225419 http://dx.doi.org/10.1093/bib/bbad199 |
Ejemplares similares
-
FR-Match: robust matching of cell type clusters from single cell RNA sequencing data using the Friedman–Rafsky non-parametric test
por: Zhang, Yun, et al.
Publicado: (2020) -
Quantum annealing-based clustering of single cell RNA-seq data
por: Kubacki, Michal, et al.
Publicado: (2023) -
Consensus clustering of single-cell RNA-seq data by enhancing network affinity
por: Cui, Yaxuan, et al.
Publicado: (2021) -
FLAN: feature-wise latent additive neural models for biological applications
por: Nguyen, An-Phi, et al.
Publicado: (2023) -
Subgraph extraction and graph representation learning for single cell Hi-C imputation and clustering
por: Zheng, Jiahao, et al.
Publicado: (2023)