Cargando…
Gene knockout inference with variational graph autoencoder learning single-cell gene regulatory networks
In this paper, we introduce Gene Knockout Inference (GenKI), a virtual knockout (KO) tool for gene function prediction using single-cell RNA sequencing (scRNA-seq) data in the absence of KO samples when only wild-type (WT) samples are available. Without using any information from real KO samples, Ge...
Autores principales: | Yang, Yongjian, Li, Guanxun, Zhong, Yan, Xu, Qian, Chen, Bo-Jia, Lin, Yu-Te, Chapkin, Robert S, Cai, James J |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10359630/ https://www.ncbi.nlm.nih.gov/pubmed/37246643 http://dx.doi.org/10.1093/nar/gkad450 |
Ejemplares similares
-
scTenifoldKnk: An efficient virtual knockout tool for gene function predictions via single-cell gene regulatory network perturbation
por: Osorio, Daniel, et al.
Publicado: (2022) -
Inferring gene regulatory network from single-cell transcriptomes with graph autoencoder model
por: Wang, Jiacheng, et al.
Publicado: (2023) -
VGAEDTI: drug-target interaction prediction based on variational inference and graph autoencoder
por: Zhang, Yuanyuan, et al.
Publicado: (2023) -
Variational autoencoding of gene landscapes during mouse CNS development uncovers layered roles of Polycomb Repressor Complex 2
por: Mora, Ariane, et al.
Publicado: (2022) -
scInTime: A Computational Method Leveraging Single-Cell Trajectory and Gene Regulatory Networks to Identify Master Regulators of Cellular Differentiation
por: Xu, Qian, et al.
Publicado: (2022)