Cargando…

Comparison of Balanites aegyptiaca parts: metabolome providing insights into plant health benefits and valorization purposes as analyzed using multiplex GC-MS, LC-MS, NMR-based metabolomics, and molecular networking

Balanites aegyptiaca (L.) Delile (Zygophyllaceae), also known as the desert date, is an edible fruit-producing tree popular for its nutritional and several health benefits. In this study, multi-targeted comparative metabolic profiling and fingerprinting approaches were conducted for the assessment o...

Descripción completa

Detalles Bibliográficos
Autores principales: Farag, Mohamed A., Baky, Mostafa H., Morgan, Ibrahim, Khalifa, Mohamed R., Rennert, Robert, Mohamed, Osama G., El-Sayed, Magdy M., Porzel, Andrea, Wessjohann, Ludger A., Ramadan, Nehal S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10359763/
https://www.ncbi.nlm.nih.gov/pubmed/37485437
http://dx.doi.org/10.1039/d3ra03141a
_version_ 1785075958637658112
author Farag, Mohamed A.
Baky, Mostafa H.
Morgan, Ibrahim
Khalifa, Mohamed R.
Rennert, Robert
Mohamed, Osama G.
El-Sayed, Magdy M.
Porzel, Andrea
Wessjohann, Ludger A.
Ramadan, Nehal S.
author_facet Farag, Mohamed A.
Baky, Mostafa H.
Morgan, Ibrahim
Khalifa, Mohamed R.
Rennert, Robert
Mohamed, Osama G.
El-Sayed, Magdy M.
Porzel, Andrea
Wessjohann, Ludger A.
Ramadan, Nehal S.
author_sort Farag, Mohamed A.
collection PubMed
description Balanites aegyptiaca (L.) Delile (Zygophyllaceae), also known as the desert date, is an edible fruit-producing tree popular for its nutritional and several health benefits. In this study, multi-targeted comparative metabolic profiling and fingerprinting approaches were conducted for the assessment of the nutrient primary and secondary metabolite heterogeneity in different parts, such as leaves, stems, seeds, unripe, and ripe fruits of B. aegyptiaca using nuclear magnetic resonance (NMR), ultra-performance liquid chromatography (UPLC-MS), and gas chromatography mass-spectrometry (GC-MS) based metabolomics coupled to multivariate analyses and in relation to its cytotoxic activities. NMR-based metabolomic study identified and quantified 15 major primary and secondary metabolites belonging to alkaloids, saponins, flavonoids, sugars, and amino and fatty acids. Principal component analysis (PCA) of the NMR dataset revealed α-glucose, sucrose, and isorhamnetin as markers for fruit and stem and unsaturated fatty acids for predominated seeds. Orthogonal projections to latent structure discriminant analysis (OPLS-DA) revealed trigonelline as a major distinctive metabolite in the immature fruit and isorhamnetin as a major distinct marker in the mature fruit. UPLC-MS/MS analysis using feature-based molecular networks revealed diverse chemical classes viz. steroidal saponins, N-containing metabolites, phenolics, fatty acids, and lipids as the constitutive metabolome in Balanites. Gas chromatography-mass spectroscopy (GC-MS) profiling of primary metabolites led to the detection of 135 peaks belonging to sugars, fatty acids/esters, amino acids, nitrogenous, and organic acids. Monosaccharides were detected at much higher levels in ripe fruit and disaccharides in predominate unripe fruits, whereas B. aegyptiaca vegetative parts (leaves and stem) were rich in amino acids and fatty acids. The antidiabetic compounds, viz, nicotinic acid, and trigonelline, were detected in all parts especially unripe fruit in addition to the sugar alcohol d-pinitol for the first time providing novel evidence for B. aegyptiaca use in diabetes. In vitro cytotoxic activity revealed the potential efficacy of immature fruit and seeds as cytotoxic agents against human prostate cancer (PC3) and human colorectal cancer (HCT-116) cell lines. Collectively, such detailed profiling of parts provides novel evidence for B. aegyptiaca medicinal uses.
format Online
Article
Text
id pubmed-10359763
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-103597632023-07-22 Comparison of Balanites aegyptiaca parts: metabolome providing insights into plant health benefits and valorization purposes as analyzed using multiplex GC-MS, LC-MS, NMR-based metabolomics, and molecular networking Farag, Mohamed A. Baky, Mostafa H. Morgan, Ibrahim Khalifa, Mohamed R. Rennert, Robert Mohamed, Osama G. El-Sayed, Magdy M. Porzel, Andrea Wessjohann, Ludger A. Ramadan, Nehal S. RSC Adv Chemistry Balanites aegyptiaca (L.) Delile (Zygophyllaceae), also known as the desert date, is an edible fruit-producing tree popular for its nutritional and several health benefits. In this study, multi-targeted comparative metabolic profiling and fingerprinting approaches were conducted for the assessment of the nutrient primary and secondary metabolite heterogeneity in different parts, such as leaves, stems, seeds, unripe, and ripe fruits of B. aegyptiaca using nuclear magnetic resonance (NMR), ultra-performance liquid chromatography (UPLC-MS), and gas chromatography mass-spectrometry (GC-MS) based metabolomics coupled to multivariate analyses and in relation to its cytotoxic activities. NMR-based metabolomic study identified and quantified 15 major primary and secondary metabolites belonging to alkaloids, saponins, flavonoids, sugars, and amino and fatty acids. Principal component analysis (PCA) of the NMR dataset revealed α-glucose, sucrose, and isorhamnetin as markers for fruit and stem and unsaturated fatty acids for predominated seeds. Orthogonal projections to latent structure discriminant analysis (OPLS-DA) revealed trigonelline as a major distinctive metabolite in the immature fruit and isorhamnetin as a major distinct marker in the mature fruit. UPLC-MS/MS analysis using feature-based molecular networks revealed diverse chemical classes viz. steroidal saponins, N-containing metabolites, phenolics, fatty acids, and lipids as the constitutive metabolome in Balanites. Gas chromatography-mass spectroscopy (GC-MS) profiling of primary metabolites led to the detection of 135 peaks belonging to sugars, fatty acids/esters, amino acids, nitrogenous, and organic acids. Monosaccharides were detected at much higher levels in ripe fruit and disaccharides in predominate unripe fruits, whereas B. aegyptiaca vegetative parts (leaves and stem) were rich in amino acids and fatty acids. The antidiabetic compounds, viz, nicotinic acid, and trigonelline, were detected in all parts especially unripe fruit in addition to the sugar alcohol d-pinitol for the first time providing novel evidence for B. aegyptiaca use in diabetes. In vitro cytotoxic activity revealed the potential efficacy of immature fruit and seeds as cytotoxic agents against human prostate cancer (PC3) and human colorectal cancer (HCT-116) cell lines. Collectively, such detailed profiling of parts provides novel evidence for B. aegyptiaca medicinal uses. The Royal Society of Chemistry 2023-07-20 /pmc/articles/PMC10359763/ /pubmed/37485437 http://dx.doi.org/10.1039/d3ra03141a Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/
spellingShingle Chemistry
Farag, Mohamed A.
Baky, Mostafa H.
Morgan, Ibrahim
Khalifa, Mohamed R.
Rennert, Robert
Mohamed, Osama G.
El-Sayed, Magdy M.
Porzel, Andrea
Wessjohann, Ludger A.
Ramadan, Nehal S.
Comparison of Balanites aegyptiaca parts: metabolome providing insights into plant health benefits and valorization purposes as analyzed using multiplex GC-MS, LC-MS, NMR-based metabolomics, and molecular networking
title Comparison of Balanites aegyptiaca parts: metabolome providing insights into plant health benefits and valorization purposes as analyzed using multiplex GC-MS, LC-MS, NMR-based metabolomics, and molecular networking
title_full Comparison of Balanites aegyptiaca parts: metabolome providing insights into plant health benefits and valorization purposes as analyzed using multiplex GC-MS, LC-MS, NMR-based metabolomics, and molecular networking
title_fullStr Comparison of Balanites aegyptiaca parts: metabolome providing insights into plant health benefits and valorization purposes as analyzed using multiplex GC-MS, LC-MS, NMR-based metabolomics, and molecular networking
title_full_unstemmed Comparison of Balanites aegyptiaca parts: metabolome providing insights into plant health benefits and valorization purposes as analyzed using multiplex GC-MS, LC-MS, NMR-based metabolomics, and molecular networking
title_short Comparison of Balanites aegyptiaca parts: metabolome providing insights into plant health benefits and valorization purposes as analyzed using multiplex GC-MS, LC-MS, NMR-based metabolomics, and molecular networking
title_sort comparison of balanites aegyptiaca parts: metabolome providing insights into plant health benefits and valorization purposes as analyzed using multiplex gc-ms, lc-ms, nmr-based metabolomics, and molecular networking
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10359763/
https://www.ncbi.nlm.nih.gov/pubmed/37485437
http://dx.doi.org/10.1039/d3ra03141a
work_keys_str_mv AT faragmohameda comparisonofbalanitesaegyptiacapartsmetabolomeprovidinginsightsintoplanthealthbenefitsandvalorizationpurposesasanalyzedusingmultiplexgcmslcmsnmrbasedmetabolomicsandmolecularnetworking
AT bakymostafah comparisonofbalanitesaegyptiacapartsmetabolomeprovidinginsightsintoplanthealthbenefitsandvalorizationpurposesasanalyzedusingmultiplexgcmslcmsnmrbasedmetabolomicsandmolecularnetworking
AT morganibrahim comparisonofbalanitesaegyptiacapartsmetabolomeprovidinginsightsintoplanthealthbenefitsandvalorizationpurposesasanalyzedusingmultiplexgcmslcmsnmrbasedmetabolomicsandmolecularnetworking
AT khalifamohamedr comparisonofbalanitesaegyptiacapartsmetabolomeprovidinginsightsintoplanthealthbenefitsandvalorizationpurposesasanalyzedusingmultiplexgcmslcmsnmrbasedmetabolomicsandmolecularnetworking
AT rennertrobert comparisonofbalanitesaegyptiacapartsmetabolomeprovidinginsightsintoplanthealthbenefitsandvalorizationpurposesasanalyzedusingmultiplexgcmslcmsnmrbasedmetabolomicsandmolecularnetworking
AT mohamedosamag comparisonofbalanitesaegyptiacapartsmetabolomeprovidinginsightsintoplanthealthbenefitsandvalorizationpurposesasanalyzedusingmultiplexgcmslcmsnmrbasedmetabolomicsandmolecularnetworking
AT elsayedmagdym comparisonofbalanitesaegyptiacapartsmetabolomeprovidinginsightsintoplanthealthbenefitsandvalorizationpurposesasanalyzedusingmultiplexgcmslcmsnmrbasedmetabolomicsandmolecularnetworking
AT porzelandrea comparisonofbalanitesaegyptiacapartsmetabolomeprovidinginsightsintoplanthealthbenefitsandvalorizationpurposesasanalyzedusingmultiplexgcmslcmsnmrbasedmetabolomicsandmolecularnetworking
AT wessjohannludgera comparisonofbalanitesaegyptiacapartsmetabolomeprovidinginsightsintoplanthealthbenefitsandvalorizationpurposesasanalyzedusingmultiplexgcmslcmsnmrbasedmetabolomicsandmolecularnetworking
AT ramadannehals comparisonofbalanitesaegyptiacapartsmetabolomeprovidinginsightsintoplanthealthbenefitsandvalorizationpurposesasanalyzedusingmultiplexgcmslcmsnmrbasedmetabolomicsandmolecularnetworking