Cargando…

A Mental Health and Well-Being Chatbot: User Event Log Analysis

BACKGROUND: Conversational user interfaces, or chatbots, are becoming more popular in the realm of digital health and well-being. While many studies focus on measuring the cause or effect of a digital intervention on people’s health and well-being (outcomes), there is a need to understand how users...

Descripción completa

Detalles Bibliográficos
Autores principales: Booth, Frederick, Potts, Courtney, Bond, Raymond, Mulvenna, Maurice, Kostenius, Catrine, Dhanapala, Indika, Vakaloudis, Alex, Cahill, Brian, Kuosmanen, Lauri, Ennis, Edel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: JMIR Publications 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10360018/
https://www.ncbi.nlm.nih.gov/pubmed/37410539
http://dx.doi.org/10.2196/43052
Descripción
Sumario:BACKGROUND: Conversational user interfaces, or chatbots, are becoming more popular in the realm of digital health and well-being. While many studies focus on measuring the cause or effect of a digital intervention on people’s health and well-being (outcomes), there is a need to understand how users really engage and use a digital intervention in the real world. OBJECTIVE: In this study, we examine the user logs of a mental well-being chatbot called ChatPal, which is based on the concept of positive psychology. The aim of this research is to analyze the log data from the chatbot to provide insight into usage patterns, the different types of users using clustering, and associations between the usage of the app’s features. METHODS: Log data from ChatPal was analyzed to explore usage. A number of user characteristics including user tenure, unique days, mood logs recorded, conversations accessed, and total number of interactions were used with k-means clustering to identify user archetypes. Association rule mining was used to explore links between conversations. RESULTS: ChatPal log data revealed 579 individuals older than 18 years used the app with most users being female (n=387, 67%). User interactions peaked around breakfast, lunchtime, and early evening. Clustering revealed 3 groups including “abandoning users” (n=473), “sporadic users” (n=93), and “frequent transient users” (n=13). Each cluster had distinct usage characteristics, and the features were significantly different (P<.001) across each group. While all conversations within the chatbot were accessed at least once by users, the “treat yourself like a friend” conversation was the most popular, which was accessed by 29% (n=168) of users. However, only 11.7% (n=68) of users repeated this exercise more than once. Analysis of transitions between conversations revealed strong links between “treat yourself like a friend,” “soothing touch,” and “thoughts diary” among others. Association rule mining confirmed these 3 conversations as having the strongest linkages and suggested other associations between the co-use of chatbot features. CONCLUSIONS: This study has provided insight into the types of people using the ChatPal chatbot, patterns of use, and associations between the usage of the app’s features, which can be used to further develop the app by considering the features most accessed by users.