Cargando…

Activation of medial septum cholinergic neurons restores cognitive function in temporal lobe epilepsy

Cognitive impairment is the most common complication in patients with temporal lobe epilepsy with hippocampal sclerosis. There is no effective treatment for cognitive impairment. Medial septum cholinergic neurons have been reported to be a potential target for controlling epileptic seizures in tempo...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Junzi, Wang, Yu, Chen, Cong, Zhang, Qingyang, Wang, Shuang, Wang, Yi, Fang, Jiajia, Wang, Ying
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Wolters Kluwer - Medknow 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10360079/
https://www.ncbi.nlm.nih.gov/pubmed/37282477
http://dx.doi.org/10.4103/1673-5374.371369
Descripción
Sumario:Cognitive impairment is the most common complication in patients with temporal lobe epilepsy with hippocampal sclerosis. There is no effective treatment for cognitive impairment. Medial septum cholinergic neurons have been reported to be a potential target for controlling epileptic seizures in temporal lobe epilepsy. However, their role in the cognitive impairment of temporal lobe epilepsy remains unclear. In this study, we found that patients with temporal lobe epilepsy with hippocampal sclerosis had a low memory quotient and severe impairment in verbal memory, but had no impairment in nonverbal memory. The cognitive impairment was slightly correlated with reduced medial septum volume and medial septum-hippocampus tracts measured by diffusion tensor imaging. In a mouse model of chronic temporal lobe epilepsy induced by kainic acid, the number of medial septum cholinergic neurons was reduced and acetylcholine release was reduced in the hippocampus. Furthermore, selective apoptosis of medial septum cholinergic neurons mimicked the cognitive deficits in epileptic mice, and activation of medial septum cholinergic neurons enhanced hippocampal acetylcholine release and restored cognitive function in both kainic acid- and kindling-induced epilepsy models. These results suggest that activation of medial septum cholinergic neurons reduces cognitive deficits in temporal lobe epilepsy by increasing acetylcholine release via projections to the hippocampus.