Cargando…
Deep reinforcement learning enables adaptive-image augmentation for automated optical inspection of plant rust
This study proposes an adaptive image augmentation scheme using deep reinforcement learning (DRL) to improve the performance of a deep learning-based automated optical inspection system. The study addresses the challenge of inconsistency in the performance of single image augmentation methods. It in...
Autores principales: | Wang, Shiyong, Khan, Asad, Lin, Ying, Jiang, Zhuo, Tang, Hao, Alomar, Suliman Yousef, Sanaullah, Muhammad, Bhatti, Uzair Aslam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10360175/ https://www.ncbi.nlm.nih.gov/pubmed/37484461 http://dx.doi.org/10.3389/fpls.2023.1142957 |
Ejemplares similares
-
A Reinforcement Learning Approach to View Planning for Automated Inspection Tasks
por: Landgraf, Christian, et al.
Publicado: (2021) -
Editorial: Investigating AI-based smart precision agriculture techniques
por: Bhatti, Uzair Aslam, et al.
Publicado: (2023) -
Safe Decision Controller for Autonomous DrivingBased on Deep Reinforcement Learning inNondeterministic Environment
por: Chen, Hongyi, et al.
Publicado: (2023) -
Towards Automated Inspections of Tunnels: A Review of Optical Inspections and Autonomous Assessment of Concrete Tunnel Linings
por: Sjölander, Andreas, et al.
Publicado: (2023) -
Effector proteins of rust fungi
por: Petre, Benjamin, et al.
Publicado: (2014)