Cargando…
Unlocking High-Efficiency Methane Oxidation with Bimetallic Pd–Ce Catalysts under Zeolite Confinement
[Image: see text] Catalytic complete oxidation is an efficient approach to reducing methane emissions, a significant contributor to global warming. This approach requires active catalysts that are highly resistant to sintering and water vapor. In this work, we demonstrate that Pd nanoparticles confi...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10360205/ https://www.ncbi.nlm.nih.gov/pubmed/37483303 http://dx.doi.org/10.1021/acsenvironau.3c00008 |
Sumario: | [Image: see text] Catalytic complete oxidation is an efficient approach to reducing methane emissions, a significant contributor to global warming. This approach requires active catalysts that are highly resistant to sintering and water vapor. In this work, we demonstrate that Pd nanoparticles confined within silicalite-1 zeolites (Pd@S-1), fabricated using a facile in situ encapsulation strategy, are highly active and stable in catalyzing methane oxidation and are superior to those supported on the S-1 surface due to a confinement effect. The activity of the confined Pd catalysts was further improved by co-confining a suitable amount of Ce within the S-1 zeolite (PdCe(0.4)@S-1), which is attributed to confinement-reinforced Pd–Ce interactions that promote the formation of oxygen vacancies and highly reactive oxygen species. Furthermore, the introduction of Ce improves the hydrophobicity of the S-1 zeolite and, by forming Pd–Ce mixed oxides, inhibits the transformation of the active PdO phase to inactive Pd(OH)(2) species. Overall, the bimetallic PdCe(0.4)@S-1 catalyst delivers exceptional outstanding activity and durability in complete methane oxidation, even in the presence of water vapor. This study may provide new prospects for the rational design of high-performance and durable Pd catalysts for complete methane oxidation. |
---|