Cargando…
An information geometrical evaluation of Shannon information metrics on a discrete n-dimensional digital manifold
The definition and nature of information have perplexed scientists due to its dual nature in measurements. The information is discrete and continuous when evaluated on a metric scale, and the Laplace-Beltrami operator and Gauss-Bonnet Theorem can map one to another. On the other hand, defining the i...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10360576/ https://www.ncbi.nlm.nih.gov/pubmed/37484350 http://dx.doi.org/10.1016/j.heliyon.2023.e16653 |
Sumario: | The definition and nature of information have perplexed scientists due to its dual nature in measurements. The information is discrete and continuous when evaluated on a metric scale, and the Laplace-Beltrami operator and Gauss-Bonnet Theorem can map one to another. On the other hand, defining the information as a discrete entity on the surface area of an n-dimensional discrete digital manifold provides a unique way of calculating the entropy of a manifold. The software simulation shows that the surface area of the discrete n-dimensional digital manifold is an effectively computable function. Moreover, it also provides the information-geometrical evaluation of Shannon information metrics. |
---|