Cargando…
MTMG: A multi-task model with multi-granularity information for drug-drug interaction extraction
Drug-drug interactions (DDIs) extraction includes identifying drug entities and interactions between drug pairs from the biomedical corpus. The discovery of potential DDIs aids in our understanding of the mechanisms underlying adverse reactions or combination therapy to improve patient safety. The m...
Autores principales: | Deng, Haohan, Li, Qiaoqin, Liu, Yongguo, Zhu, Jiajing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10360954/ https://www.ncbi.nlm.nih.gov/pubmed/37484258 http://dx.doi.org/10.1016/j.heliyon.2023.e16819 |
Ejemplares similares
-
Information Extraction Network Based on Multi-Granularity Attention and Multi-Scale Self-Learning
por: Sun, Weiwei, et al.
Publicado: (2023) -
Multi-scaled self-attention for drug–target interaction prediction based on multi-granularity representation
por: Zeng, Yuni, et al.
Publicado: (2022) -
Prediction of drug–target interactions through multi-task learning
por: Moon, Chaeyoung, et al.
Publicado: (2022) -
DDI-MuG: Multi-aspect graphs for drug-drug interaction extraction
por: Yang, Jie, et al.
Publicado: (2023) -
Predicting anticancer synergistic drug combinations based on multi-task learning
por: Chen, Danyi, et al.
Publicado: (2023)