Cargando…

Mechanistic insight into the bioactivity of prodigiosin-entrapped lipid nanoparticles against triple-negative breast, lung and colon cancer cell lines

This research investigates the potentials of prodigiosin(PG) derived from bacteria and its formulations against triple-negative breast (TNB), lung, and colon cancer cells. The PG was extracted from S. marcescens using continuous batch culture, characterized, and formulated into lyophilized parentera...

Descripción completa

Detalles Bibliográficos
Autores principales: Gugu, Thaddeus H., Eze, Christopher O., Kenechukwu, Franklin C., Khumaini Mudhar Bintang, Muhammd A., Patil, Sanjay B., Basarkar, Ganesh D., Attama, Anthony A., Ibezim, Emmanuel C., Upasani, Chandrashekhar D., Srichana, Teerapol
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10361034/
https://www.ncbi.nlm.nih.gov/pubmed/37484262
http://dx.doi.org/10.1016/j.heliyon.2023.e16963
Descripción
Sumario:This research investigates the potentials of prodigiosin(PG) derived from bacteria and its formulations against triple-negative breast (TNB), lung, and colon cancer cells. The PG was extracted from S. marcescens using continuous batch culture, characterized, and formulated into lyophilized parenteral nanoparticles (PNPs). The formulations were characterized with respect to entrapment efficiency (EE), DSC, FT-IR, TEM, and proton nuclear magnetic resonance (1H NMR) spectroscopy. In vitro drug release was evaluated in phosphate buffer (pH 7.4) while acute toxicity, hematological and histopathological studies were performed on rats. The in vitro cytotoxicity was evaluated against TNB (MCF-7), lung (A-549), and colon (HT-29) cancer cell lines. High EE (92.3 ± 12%) and drug release of up to 89.4% within 8 h were obtained. DSC thermograms of PG and PG-PNPs showed endothermic peaks indicating amorphous nature. The FT-IR spectrum of PG-PNPs revealed remarkable peaks of pure PG, indicating no strong chemical interaction between the drug and excipients. The TEM micrograph of the PG-PNPs showed nano-sized formulations (20–30 nm) whose particles were mostly lamellar and hexagonal structures. The 1H NMR result revealed the chemical structure of PG showing all assigned proton chemical shifts. Toxicity results of the PG and its formulation up to a concentration of 5000 mg/kg showed insignificant vacuolar changes of hepatocytes in the liver, with normal renal medulla and cortex in the kidney. The PG and PG-PNPs inhibited the growth of breast, lung, and colon cell lines. The nano-sized lipid formulation (PG-PNPs) showed potential in PG delivery and cancer treatments.