Cargando…
Ultra-short-term wind power prediction method combining financial technology feature engineering and XGBoost algorithm
The input features of existing wind power time-series data prediction models are difficult to indicate the potential relationships between data, and the prediction methods are based on deep learning, which makes the convergence of the models slow and difficult to be applied to the actual production...
Autores principales: | Guan, Shijie, Wang, Yongsheng, Liu, Limin, Gao, Jing, Xu, Zhiwei, Kan, Sijia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10361039/ https://www.ncbi.nlm.nih.gov/pubmed/37484352 http://dx.doi.org/10.1016/j.heliyon.2023.e16938 |
Ejemplares similares
-
Wind energy conversion technologies and engineering approaches to enhancing wind power generation: A review
por: Desalegn, Belachew, et al.
Publicado: (2022) -
Ultra-Short-Term Wind Power Forecasting Based on CGAN-CNN-LSTM Model Supported by Lidar
por: Zhang, Jinhua, et al.
Publicado: (2023) -
Gene Expression Value Prediction Based on XGBoost Algorithm
por: Li, Wei, et al.
Publicado: (2019) -
Artificial Breath Classification Using XGBoost Algorithm for Diabetes Detection
por: Paleczek, Anna, et al.
Publicado: (2021) -
An Indoor Fingerprint Positioning Algorithm Based on WKNN and Improved XGBoost
por: Lu, Haizhao, et al.
Publicado: (2023)