Cargando…
A new model based on improved VGG16 for corn weed identification
Weeds remain one of the most important factors affecting the yield and quality of corn in modern agricultural production. To use deep convolutional neural networks to accurately, efficiently, and losslessly identify weeds in corn fields, a new corn weed identification model, SE-VGG16, is proposed. T...
Autores principales: | Yang, Le, Xu, Shuang, Yu, XiaoYun, Long, HuiBin, Zhang, HuanHuan, Zhu, YingWen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10361060/ https://www.ncbi.nlm.nih.gov/pubmed/37484459 http://dx.doi.org/10.3389/fpls.2023.1205151 |
Ejemplares similares
-
Stacking-based and improved convolutional neural network: a new approach in rice leaf disease identification
por: Yang, Le, et al.
Publicado: (2023) -
YOLOX-based blue laser weeding robot in corn field
por: Zhu, Huibin, et al.
Publicado: (2022) -
Astragalus sinicus Incorporated as Green Manure for Weed Control in Corn
por: Liu, Silin, et al.
Publicado: (2022) -
Weed25: A deep learning dataset for weed identification
por: Wang, Pei, et al.
Publicado: (2022) -
Identification of Weeds Based on Hyperspectral Imaging and Machine Learning
por: Li, Yanjie, et al.
Publicado: (2021)