Cargando…
Preparing CT imaging datasets for deep learning in lung nodule analysis: Insights from four well-known datasets
Background: Deep learning is an important means to realize the automatic detection, segmentation, and classification of pulmonary nodules in computed tomography (CT) images. An entire CT scan cannot directly be used by deep learning models due to image size, image format, image dimensionality, and o...
Autores principales: | Wang, Jingxuan, Sourlos, Nikos, Zheng, Sunyi, van der Velden, Nils, Pelgrim, Gert Jan, Vliegenthart, Rozemarijn, van Ooijen, Peter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10361226/ https://www.ncbi.nlm.nih.gov/pubmed/37484314 http://dx.doi.org/10.1016/j.heliyon.2023.e17104 |
Ejemplares similares
-
Possible Bias in Supervised Deep Learning Algorithms for CT Lung Nodule Detection and Classification
por: Sourlos, Nikos, et al.
Publicado: (2022) -
Assessment of Dynamic Change of Coronary Artery Geometry and Its Relationship to Coronary Artery Disease, Based on Coronary CT Angiography
por: van Zandwijk, Jordy K., et al.
Publicado: (2019) -
Detection and size quantification of pulmonary nodules in ultralow-dose versus regular-dose CT: a comparative study in COPD patients
por: Han, Daiwei, et al.
Publicado: (2023) -
Performance of computer-aided detection of pulmonary nodules in low-dose CT: comparison with double reading by nodule volume
por: Zhao, Yingru, et al.
Publicado: (2012) -
Seasonal prevalence and characteristics of low-dose CT detected lung nodules in a general Dutch population
por: Lancaster, Harriet L., et al.
Publicado: (2021)