Cargando…
Osseointegration in additive-manufactured titanium implants: A systematic review of animal studies on the need for surface treatment
The objective of the systematic review is to find an answer to a question: “Do surface treatments on titanium implants produced by additive manufacturing improve osseointegration, compared to untreated surfaces?“. This review followed the Preferred Reporting Items for Systematic Review and Meta-Anal...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10361303/ https://www.ncbi.nlm.nih.gov/pubmed/37484223 http://dx.doi.org/10.1016/j.heliyon.2023.e17105 |
Sumario: | The objective of the systematic review is to find an answer to a question: “Do surface treatments on titanium implants produced by additive manufacturing improve osseointegration, compared to untreated surfaces?“. This review followed the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA 2020) and was registered in the International Prospective Register of Systematic Reviews (PROSPERO) (CRD42022321351). Searches were performed in PubMed, Scopus, Science Direct, Embase, and Google Scholar databases on March 22nd, 2022. Articles were chosen in 2 steps by 2 blinded reviewers based on previously selected inclusion criteria: articles in animals that addressed the influence of surface treatments on osseointegration in implants produced by additive manufacturing. Articles were excluded that (1) did not use titanium surface, 2) that did not evaluate surface treatments, 3) that did not described osseointegration, 4) Studies with only in vitro analyses, clinical studies, systematic reviews, book chapters, short communications, conference abstracts, case reports and personal opinions.). 1003 articles were found and, after applying the eligibility criteria, 17 were used for the construction of this review. All included studies found positive osseointegration results from performing surface treatments on titanium. The risk of bias was analyzed using the SYRCLE assessment tool. Surface treatments are proposed to promote changes in the microstructure and composition of the implant surface to favor the adhesion of bone cells responsible for osseointegration. It is observed that despite the benefits generated by the additive manufacturing process in the microstructure of the implant surface, surface treatments are still indispensable, as they can promote more suitable characteristics for bone-implant integration. It can be concluded that the surface treatments evaluated in this systematic review, performed on implants produced by additive manufacturing, optimize osseointegration, as it allows the creation of a micro-nano-textured structure that makes the surface more hydrophilic and allows better contact bone-implant. |
---|