Cargando…

Rev1 deficiency induces a metabolic shift in MEFs that can be manipulated by the NAD(+) precursor nicotinamide riboside

Replication stress, caused by Rev1 deficiency, is associated with mitochondrial dysfunction, and metabolic stress. However, the overall metabolic alterations and possible interventions to rescue the deficits due to Rev1 loss remain unclear. Here, we report that loss of Rev1 leads to intense changes...

Descripción completa

Detalles Bibliográficos
Autores principales: Anugula, Sharath, Li, Zhiquan, Li, Yuan, Hendriksen, Alexander, Christensen, Peter Bjarn, Wang, Lin, Monk, Jonathan M., de Wind, Niels, Bohr, Vilhelm A., Desler, Claus, Naviaux, Robert K., Rasmussen, Lene Juel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10361373/
https://www.ncbi.nlm.nih.gov/pubmed/37484291
http://dx.doi.org/10.1016/j.heliyon.2023.e17392
_version_ 1785076203711889408
author Anugula, Sharath
Li, Zhiquan
Li, Yuan
Hendriksen, Alexander
Christensen, Peter Bjarn
Wang, Lin
Monk, Jonathan M.
de Wind, Niels
Bohr, Vilhelm A.
Desler, Claus
Naviaux, Robert K.
Rasmussen, Lene Juel
author_facet Anugula, Sharath
Li, Zhiquan
Li, Yuan
Hendriksen, Alexander
Christensen, Peter Bjarn
Wang, Lin
Monk, Jonathan M.
de Wind, Niels
Bohr, Vilhelm A.
Desler, Claus
Naviaux, Robert K.
Rasmussen, Lene Juel
author_sort Anugula, Sharath
collection PubMed
description Replication stress, caused by Rev1 deficiency, is associated with mitochondrial dysfunction, and metabolic stress. However, the overall metabolic alterations and possible interventions to rescue the deficits due to Rev1 loss remain unclear. Here, we report that loss of Rev1 leads to intense changes in metabolites and that this can be manipulated by NAD (+) supplementation. Autophagy decreases in Rev1(−/−) mouse embryonic fibroblasts (MEFs) and can be restored by supplementing the NAD(+) precursor nicotinamide riboside (NR). The abnormal mitochondrial morphology in Rev1(−/−) MEFs can be partially reversed by NR supplementation, which also protects the mitochondrial cristae from rotenone-induced degeneration. In nematodes rev-1 deficiency causes sensitivity to oxidative stress but this cannot be rescued by NR supplementation. In conclusion, Rev1 deficiency leads to metabolic dysregulation of especially lipid and nucleotide metabolism, impaired autophagy, and mitochondrial anomalies, and all of these phenotypes can be improved by NR replenishment in MEFs.
format Online
Article
Text
id pubmed-10361373
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-103613732023-07-22 Rev1 deficiency induces a metabolic shift in MEFs that can be manipulated by the NAD(+) precursor nicotinamide riboside Anugula, Sharath Li, Zhiquan Li, Yuan Hendriksen, Alexander Christensen, Peter Bjarn Wang, Lin Monk, Jonathan M. de Wind, Niels Bohr, Vilhelm A. Desler, Claus Naviaux, Robert K. Rasmussen, Lene Juel Heliyon Research Article Replication stress, caused by Rev1 deficiency, is associated with mitochondrial dysfunction, and metabolic stress. However, the overall metabolic alterations and possible interventions to rescue the deficits due to Rev1 loss remain unclear. Here, we report that loss of Rev1 leads to intense changes in metabolites and that this can be manipulated by NAD (+) supplementation. Autophagy decreases in Rev1(−/−) mouse embryonic fibroblasts (MEFs) and can be restored by supplementing the NAD(+) precursor nicotinamide riboside (NR). The abnormal mitochondrial morphology in Rev1(−/−) MEFs can be partially reversed by NR supplementation, which also protects the mitochondrial cristae from rotenone-induced degeneration. In nematodes rev-1 deficiency causes sensitivity to oxidative stress but this cannot be rescued by NR supplementation. In conclusion, Rev1 deficiency leads to metabolic dysregulation of especially lipid and nucleotide metabolism, impaired autophagy, and mitochondrial anomalies, and all of these phenotypes can be improved by NR replenishment in MEFs. Elsevier 2023-06-19 /pmc/articles/PMC10361373/ /pubmed/37484291 http://dx.doi.org/10.1016/j.heliyon.2023.e17392 Text en © 2023 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Research Article
Anugula, Sharath
Li, Zhiquan
Li, Yuan
Hendriksen, Alexander
Christensen, Peter Bjarn
Wang, Lin
Monk, Jonathan M.
de Wind, Niels
Bohr, Vilhelm A.
Desler, Claus
Naviaux, Robert K.
Rasmussen, Lene Juel
Rev1 deficiency induces a metabolic shift in MEFs that can be manipulated by the NAD(+) precursor nicotinamide riboside
title Rev1 deficiency induces a metabolic shift in MEFs that can be manipulated by the NAD(+) precursor nicotinamide riboside
title_full Rev1 deficiency induces a metabolic shift in MEFs that can be manipulated by the NAD(+) precursor nicotinamide riboside
title_fullStr Rev1 deficiency induces a metabolic shift in MEFs that can be manipulated by the NAD(+) precursor nicotinamide riboside
title_full_unstemmed Rev1 deficiency induces a metabolic shift in MEFs that can be manipulated by the NAD(+) precursor nicotinamide riboside
title_short Rev1 deficiency induces a metabolic shift in MEFs that can be manipulated by the NAD(+) precursor nicotinamide riboside
title_sort rev1 deficiency induces a metabolic shift in mefs that can be manipulated by the nad(+) precursor nicotinamide riboside
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10361373/
https://www.ncbi.nlm.nih.gov/pubmed/37484291
http://dx.doi.org/10.1016/j.heliyon.2023.e17392
work_keys_str_mv AT anugulasharath rev1deficiencyinducesametabolicshiftinmefsthatcanbemanipulatedbythenadprecursornicotinamideriboside
AT lizhiquan rev1deficiencyinducesametabolicshiftinmefsthatcanbemanipulatedbythenadprecursornicotinamideriboside
AT liyuan rev1deficiencyinducesametabolicshiftinmefsthatcanbemanipulatedbythenadprecursornicotinamideriboside
AT hendriksenalexander rev1deficiencyinducesametabolicshiftinmefsthatcanbemanipulatedbythenadprecursornicotinamideriboside
AT christensenpeterbjarn rev1deficiencyinducesametabolicshiftinmefsthatcanbemanipulatedbythenadprecursornicotinamideriboside
AT wanglin rev1deficiencyinducesametabolicshiftinmefsthatcanbemanipulatedbythenadprecursornicotinamideriboside
AT monkjonathanm rev1deficiencyinducesametabolicshiftinmefsthatcanbemanipulatedbythenadprecursornicotinamideriboside
AT dewindniels rev1deficiencyinducesametabolicshiftinmefsthatcanbemanipulatedbythenadprecursornicotinamideriboside
AT bohrvilhelma rev1deficiencyinducesametabolicshiftinmefsthatcanbemanipulatedbythenadprecursornicotinamideriboside
AT deslerclaus rev1deficiencyinducesametabolicshiftinmefsthatcanbemanipulatedbythenadprecursornicotinamideriboside
AT naviauxrobertk rev1deficiencyinducesametabolicshiftinmefsthatcanbemanipulatedbythenadprecursornicotinamideriboside
AT rasmussenlenejuel rev1deficiencyinducesametabolicshiftinmefsthatcanbemanipulatedbythenadprecursornicotinamideriboside