Cargando…
Rev1 deficiency induces a metabolic shift in MEFs that can be manipulated by the NAD(+) precursor nicotinamide riboside
Replication stress, caused by Rev1 deficiency, is associated with mitochondrial dysfunction, and metabolic stress. However, the overall metabolic alterations and possible interventions to rescue the deficits due to Rev1 loss remain unclear. Here, we report that loss of Rev1 leads to intense changes...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10361373/ https://www.ncbi.nlm.nih.gov/pubmed/37484291 http://dx.doi.org/10.1016/j.heliyon.2023.e17392 |
_version_ | 1785076203711889408 |
---|---|
author | Anugula, Sharath Li, Zhiquan Li, Yuan Hendriksen, Alexander Christensen, Peter Bjarn Wang, Lin Monk, Jonathan M. de Wind, Niels Bohr, Vilhelm A. Desler, Claus Naviaux, Robert K. Rasmussen, Lene Juel |
author_facet | Anugula, Sharath Li, Zhiquan Li, Yuan Hendriksen, Alexander Christensen, Peter Bjarn Wang, Lin Monk, Jonathan M. de Wind, Niels Bohr, Vilhelm A. Desler, Claus Naviaux, Robert K. Rasmussen, Lene Juel |
author_sort | Anugula, Sharath |
collection | PubMed |
description | Replication stress, caused by Rev1 deficiency, is associated with mitochondrial dysfunction, and metabolic stress. However, the overall metabolic alterations and possible interventions to rescue the deficits due to Rev1 loss remain unclear. Here, we report that loss of Rev1 leads to intense changes in metabolites and that this can be manipulated by NAD (+) supplementation. Autophagy decreases in Rev1(−/−) mouse embryonic fibroblasts (MEFs) and can be restored by supplementing the NAD(+) precursor nicotinamide riboside (NR). The abnormal mitochondrial morphology in Rev1(−/−) MEFs can be partially reversed by NR supplementation, which also protects the mitochondrial cristae from rotenone-induced degeneration. In nematodes rev-1 deficiency causes sensitivity to oxidative stress but this cannot be rescued by NR supplementation. In conclusion, Rev1 deficiency leads to metabolic dysregulation of especially lipid and nucleotide metabolism, impaired autophagy, and mitochondrial anomalies, and all of these phenotypes can be improved by NR replenishment in MEFs. |
format | Online Article Text |
id | pubmed-10361373 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-103613732023-07-22 Rev1 deficiency induces a metabolic shift in MEFs that can be manipulated by the NAD(+) precursor nicotinamide riboside Anugula, Sharath Li, Zhiquan Li, Yuan Hendriksen, Alexander Christensen, Peter Bjarn Wang, Lin Monk, Jonathan M. de Wind, Niels Bohr, Vilhelm A. Desler, Claus Naviaux, Robert K. Rasmussen, Lene Juel Heliyon Research Article Replication stress, caused by Rev1 deficiency, is associated with mitochondrial dysfunction, and metabolic stress. However, the overall metabolic alterations and possible interventions to rescue the deficits due to Rev1 loss remain unclear. Here, we report that loss of Rev1 leads to intense changes in metabolites and that this can be manipulated by NAD (+) supplementation. Autophagy decreases in Rev1(−/−) mouse embryonic fibroblasts (MEFs) and can be restored by supplementing the NAD(+) precursor nicotinamide riboside (NR). The abnormal mitochondrial morphology in Rev1(−/−) MEFs can be partially reversed by NR supplementation, which also protects the mitochondrial cristae from rotenone-induced degeneration. In nematodes rev-1 deficiency causes sensitivity to oxidative stress but this cannot be rescued by NR supplementation. In conclusion, Rev1 deficiency leads to metabolic dysregulation of especially lipid and nucleotide metabolism, impaired autophagy, and mitochondrial anomalies, and all of these phenotypes can be improved by NR replenishment in MEFs. Elsevier 2023-06-19 /pmc/articles/PMC10361373/ /pubmed/37484291 http://dx.doi.org/10.1016/j.heliyon.2023.e17392 Text en © 2023 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research Article Anugula, Sharath Li, Zhiquan Li, Yuan Hendriksen, Alexander Christensen, Peter Bjarn Wang, Lin Monk, Jonathan M. de Wind, Niels Bohr, Vilhelm A. Desler, Claus Naviaux, Robert K. Rasmussen, Lene Juel Rev1 deficiency induces a metabolic shift in MEFs that can be manipulated by the NAD(+) precursor nicotinamide riboside |
title | Rev1 deficiency induces a metabolic shift in MEFs that can be manipulated by the NAD(+) precursor nicotinamide riboside |
title_full | Rev1 deficiency induces a metabolic shift in MEFs that can be manipulated by the NAD(+) precursor nicotinamide riboside |
title_fullStr | Rev1 deficiency induces a metabolic shift in MEFs that can be manipulated by the NAD(+) precursor nicotinamide riboside |
title_full_unstemmed | Rev1 deficiency induces a metabolic shift in MEFs that can be manipulated by the NAD(+) precursor nicotinamide riboside |
title_short | Rev1 deficiency induces a metabolic shift in MEFs that can be manipulated by the NAD(+) precursor nicotinamide riboside |
title_sort | rev1 deficiency induces a metabolic shift in mefs that can be manipulated by the nad(+) precursor nicotinamide riboside |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10361373/ https://www.ncbi.nlm.nih.gov/pubmed/37484291 http://dx.doi.org/10.1016/j.heliyon.2023.e17392 |
work_keys_str_mv | AT anugulasharath rev1deficiencyinducesametabolicshiftinmefsthatcanbemanipulatedbythenadprecursornicotinamideriboside AT lizhiquan rev1deficiencyinducesametabolicshiftinmefsthatcanbemanipulatedbythenadprecursornicotinamideriboside AT liyuan rev1deficiencyinducesametabolicshiftinmefsthatcanbemanipulatedbythenadprecursornicotinamideriboside AT hendriksenalexander rev1deficiencyinducesametabolicshiftinmefsthatcanbemanipulatedbythenadprecursornicotinamideriboside AT christensenpeterbjarn rev1deficiencyinducesametabolicshiftinmefsthatcanbemanipulatedbythenadprecursornicotinamideriboside AT wanglin rev1deficiencyinducesametabolicshiftinmefsthatcanbemanipulatedbythenadprecursornicotinamideriboside AT monkjonathanm rev1deficiencyinducesametabolicshiftinmefsthatcanbemanipulatedbythenadprecursornicotinamideriboside AT dewindniels rev1deficiencyinducesametabolicshiftinmefsthatcanbemanipulatedbythenadprecursornicotinamideriboside AT bohrvilhelma rev1deficiencyinducesametabolicshiftinmefsthatcanbemanipulatedbythenadprecursornicotinamideriboside AT deslerclaus rev1deficiencyinducesametabolicshiftinmefsthatcanbemanipulatedbythenadprecursornicotinamideriboside AT naviauxrobertk rev1deficiencyinducesametabolicshiftinmefsthatcanbemanipulatedbythenadprecursornicotinamideriboside AT rasmussenlenejuel rev1deficiencyinducesametabolicshiftinmefsthatcanbemanipulatedbythenadprecursornicotinamideriboside |