Cargando…
Identifying Metabolic Syndrome Easily and Cost Effectively Using Non-Invasive Methods with Machine Learning Models
PURPOSE: The objective of this study was to employ machine learning (ML) models utilizing non-invasive factors to achieve early and low-cost identification of MetS in a large physical examination population. PATIENTS AND METHODS: The study enrolled 9171 participants who underwent physical examinatio...
Autores principales: | Xu, Wei, Zhang, Zikai, Hu, Kerong, Fang, Ping, Li, Ran, Kong, Dehong, Xuan, Miao, Yue, Yang, She, Dunmin, Xue, Ying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10361460/ https://www.ncbi.nlm.nih.gov/pubmed/37484515 http://dx.doi.org/10.2147/DMSO.S413829 |
Ejemplares similares
-
Serum Uric Acid to Creatinine Ratio and Risk of Metabolic Syndrome in Patients with Overweight/Obesity
por: She, Dunmin, et al.
Publicado: (2023) -
Semaglutide May Alleviate Hepatic Steatosis in T2DM Combined with NFALD Mice via miR-5120/ABHD6
por: Li, Ran, et al.
Publicado: (2022) -
Glucagon-Like Peptide 1 Receptor Agonist Improves Renal Tubular Damage in Mice with Diabetic Kidney Disease
por: Li, Ran, et al.
Publicado: (2022) -
Serum osteocalcin level is associated with the mortality in Chinese patients with Fibrodysplasia ossificans progressiva aged ≤18 years at diagnosis
por: She, Dunmin, et al.
Publicado: (2020) -
Is it Possible to Easily Identify Metabolically Healthy Obese
Women?
por: Scorsatto, Mauara, et al.
Publicado: (2018)