Cargando…
Hypergraph partitioning using tensor eigenvalue decomposition
Hypergraphs have gained increasing attention in the machine learning community lately due to their superiority over graphs in capturing super-dyadic interactions among entities. In this work, we propose a novel approach for the partitioning of k-uniform hypergraphs. Most of the existing methods work...
Autores principales: | Maurya, Deepak, Ravindran, Balaraman |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10361499/ https://www.ncbi.nlm.nih.gov/pubmed/37478054 http://dx.doi.org/10.1371/journal.pone.0288457 |
Ejemplares similares
-
Tensor eigenvalues and their applications
por: Qi, Liqun, et al.
Publicado: (2018) -
Eigenvalues of partitioned matrices "generated" by a matrix with known eigenvalues
por: Gyr, Marcel
Publicado: (1974) -
An eigenvalue localization set for tensors and its applications
por: Zhao, Jianxing, et al.
Publicado: (2017) -
Two S-type Z-eigenvalue inclusion sets for tensors
por: Wang, Yanan, et al.
Publicado: (2017) -
A new Z-eigenvalue localization set for tensors
por: Zhao, Jianxing
Publicado: (2017)