Cargando…
Transcranial focused ultrasound stimulation of cortical and thalamic somatosensory areas in human
The effects of transcranial focused ultrasound (FUS) stimulation of the primary somatosensory cortex and its thalamic projection (i.e., ventral posterolateral nucleus) on the generation of electroencephalographic (EEG) responses were evaluated in healthy human volunteers. Stimulation of the unilater...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10361523/ https://www.ncbi.nlm.nih.gov/pubmed/37478086 http://dx.doi.org/10.1371/journal.pone.0288654 |
_version_ | 1785076235593842688 |
---|---|
author | Kim, Hyun-Chul Lee, Wonhye Weisholtz, Daniel S. Yoo, Seung-Schik |
author_facet | Kim, Hyun-Chul Lee, Wonhye Weisholtz, Daniel S. Yoo, Seung-Schik |
author_sort | Kim, Hyun-Chul |
collection | PubMed |
description | The effects of transcranial focused ultrasound (FUS) stimulation of the primary somatosensory cortex and its thalamic projection (i.e., ventral posterolateral nucleus) on the generation of electroencephalographic (EEG) responses were evaluated in healthy human volunteers. Stimulation of the unilateral somatosensory circuits corresponding to the non-dominant hand generated EEG evoked potentials across all participants; however, not all perceived stimulation-mediated tactile sensations of the hand. These FUS-evoked EEG potentials (FEP) were observed from both brain hemispheres and shared similarities with somatosensory evoked potentials (SSEP) from median nerve stimulation. Use of a 0.5 ms pulse duration (PD) sonication given at 70% duty cycle, compared to the use of 1 and 2 ms PD, elicited more distinctive FEP peak features from the hemisphere ipsilateral to sonication. Although several participants reported hearing tones associated with FUS stimulation, the observed FEP were not likely to be confounded by the auditory sensation based on a separate measurement of auditory evoked potentials (AEP) to tonal stimulation (mimicking the same repetition frequency as the FUS stimulation). Off-line changes in resting-state functional connectivity (FC) associated with thalamic stimulation revealed that the FUS stimulation enhanced connectivity in a network of sensorimotor and sensory integration areas, which lasted for at least more than an hour. Clinical neurological evaluations, EEG, and neuroanatomical MRI did not reveal any adverse or unintended effects of sonication, attesting its safety. These results suggest that FUS stimulation may induce long-term neuroplasticity in humans, indicating its neurotherapeutic potential for various neurological and neuropsychiatric conditions. |
format | Online Article Text |
id | pubmed-10361523 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-103615232023-07-22 Transcranial focused ultrasound stimulation of cortical and thalamic somatosensory areas in human Kim, Hyun-Chul Lee, Wonhye Weisholtz, Daniel S. Yoo, Seung-Schik PLoS One Research Article The effects of transcranial focused ultrasound (FUS) stimulation of the primary somatosensory cortex and its thalamic projection (i.e., ventral posterolateral nucleus) on the generation of electroencephalographic (EEG) responses were evaluated in healthy human volunteers. Stimulation of the unilateral somatosensory circuits corresponding to the non-dominant hand generated EEG evoked potentials across all participants; however, not all perceived stimulation-mediated tactile sensations of the hand. These FUS-evoked EEG potentials (FEP) were observed from both brain hemispheres and shared similarities with somatosensory evoked potentials (SSEP) from median nerve stimulation. Use of a 0.5 ms pulse duration (PD) sonication given at 70% duty cycle, compared to the use of 1 and 2 ms PD, elicited more distinctive FEP peak features from the hemisphere ipsilateral to sonication. Although several participants reported hearing tones associated with FUS stimulation, the observed FEP were not likely to be confounded by the auditory sensation based on a separate measurement of auditory evoked potentials (AEP) to tonal stimulation (mimicking the same repetition frequency as the FUS stimulation). Off-line changes in resting-state functional connectivity (FC) associated with thalamic stimulation revealed that the FUS stimulation enhanced connectivity in a network of sensorimotor and sensory integration areas, which lasted for at least more than an hour. Clinical neurological evaluations, EEG, and neuroanatomical MRI did not reveal any adverse or unintended effects of sonication, attesting its safety. These results suggest that FUS stimulation may induce long-term neuroplasticity in humans, indicating its neurotherapeutic potential for various neurological and neuropsychiatric conditions. Public Library of Science 2023-07-21 /pmc/articles/PMC10361523/ /pubmed/37478086 http://dx.doi.org/10.1371/journal.pone.0288654 Text en © 2023 Kim et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Kim, Hyun-Chul Lee, Wonhye Weisholtz, Daniel S. Yoo, Seung-Schik Transcranial focused ultrasound stimulation of cortical and thalamic somatosensory areas in human |
title | Transcranial focused ultrasound stimulation of cortical and thalamic somatosensory areas in human |
title_full | Transcranial focused ultrasound stimulation of cortical and thalamic somatosensory areas in human |
title_fullStr | Transcranial focused ultrasound stimulation of cortical and thalamic somatosensory areas in human |
title_full_unstemmed | Transcranial focused ultrasound stimulation of cortical and thalamic somatosensory areas in human |
title_short | Transcranial focused ultrasound stimulation of cortical and thalamic somatosensory areas in human |
title_sort | transcranial focused ultrasound stimulation of cortical and thalamic somatosensory areas in human |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10361523/ https://www.ncbi.nlm.nih.gov/pubmed/37478086 http://dx.doi.org/10.1371/journal.pone.0288654 |
work_keys_str_mv | AT kimhyunchul transcranialfocusedultrasoundstimulationofcorticalandthalamicsomatosensoryareasinhuman AT leewonhye transcranialfocusedultrasoundstimulationofcorticalandthalamicsomatosensoryareasinhuman AT weisholtzdaniels transcranialfocusedultrasoundstimulationofcorticalandthalamicsomatosensoryareasinhuman AT yooseungschik transcranialfocusedultrasoundstimulationofcorticalandthalamicsomatosensoryareasinhuman |