Cargando…
Pseudo-heterostructure and condensation of 1D moiré excitons in twisted phosphorene bilayers
Heterostructures are not expected to form in a single homogeneous material. Here, we show that planar pseudo-heterostructures could emerge in a twisted bilayer of phosphorene (tbP), driving in-plane energy and charge transfer. The formation of moiré superlattices combined with electronic anisotropy...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10361592/ https://www.ncbi.nlm.nih.gov/pubmed/37478184 http://dx.doi.org/10.1126/sciadv.adi5404 |
Sumario: | Heterostructures are not expected to form in a single homogeneous material. Here, we show that planar pseudo-heterostructures could emerge in a twisted bilayer of phosphorene (tbP), driving in-plane energy and charge transfer. The formation of moiré superlattices combined with electronic anisotropy in tbPs yields one-dimensional (1D) moiré excitons with long radiative and nonradiative lifetimes, large binding energies, and deep moiré potentials. Low-frequency moiré phonons and dynamic moiré potentials are revealed to be responsible for the in-plane energy/charge transfer and exciton dynamics. The 1D moiré excitons are predicted to exhibit Bose-Einstein condensation at high temperatures and may lead to exotic Tonks-Girardeau Bose gases. |
---|